APPLICATION EXAMPLES

ex. 1 Horizontal Impact without Propelling Force
(Application)
$\mathrm{W}=20 \mathrm{~kg}$
$\mathrm{V}=1 \mathrm{~m} / \mathrm{s}$
$C=1000 / \mathrm{Hr}$
(Formulas and Calculation)
E1 $=0.5 \times \mathrm{W} \times$ V2
$\mathrm{E} 2=0$
E3 $=\mathrm{E} 1+\mathrm{E} 2$
$\mathrm{E} 4=\mathrm{E} 3 \times \mathrm{C}$
$\mathrm{We}=\mathrm{W}$
$\mathrm{E} 1=0.5 \times 20 \times 12=10 \mathrm{Nm}$
$\mathrm{E} 2=0$
E3 $=10+0=10 \mathrm{Nm} / \mathrm{C}$
$\mathrm{E} 4=10 \times 1000=10000 \mathrm{Nm} / \mathrm{Hr}$
$\mathrm{We}=20 \mathrm{~kg}$
Model SC1415-1 is adequate

ex. 2 Horizontal Impact with Conveyor Driving
(Application)
W = 10 kg
$\mathrm{V}=1 \mathrm{~m} / \mathrm{s}$
$C=600 / \mathrm{Hr}$
$\mathrm{S}=0.01 \mathrm{~m}$
$\mu=0.25$
(Formulas and Calculation)
$\mathrm{E} 1=0.5 \times \mathrm{W} \times \mathrm{V} 2$
$\mathrm{E} 2=\mathrm{W} \times \mu \mathrm{xg} \times \mathrm{S}$
$\mathrm{E} 3=\mathrm{E} 1+\mathrm{E} 2$
$\mathrm{E} 4=\mathrm{E} 3 \times \mathrm{C}$
$\mathrm{We}=2 \times \mathrm{E} 3 / \mathrm{V} 2$
$\mathrm{E} 1=0.5 \times 10 \times 12=5 \mathrm{Nm}$
$\mathrm{E} 2=10 \times 0.25 \times 9.81 \times 0.01=0.25 \mathrm{Nm}$
$\mathrm{E} 3=5+0.25=5.25 \mathrm{Nm} / \mathrm{C}$
$\mathrm{E} 4=5.25 \times 600=3,150 \mathrm{Nm} / \mathrm{Hr}$
$\mathrm{We}=2 \times 5.25 / 12=10.5 \mathrm{~kg}$
Model SC1210-2 is adequate

ex. 3 Horizontal Impact with Propelling Force

(Application)	(Formulas and Calculation)	$\mathrm{E} 1=0.5 \times 50 \times 12=25 \mathrm{Nm}$
$\mathrm{W}=50 \mathrm{~kg}$	$\mathrm{E} 1=0.5 \times \mathrm{W} \times \mathrm{V} 2$	$\mathrm{E} 2=1000 \times 0.04=40 \mathrm{Nm}$
$\mathrm{V}=1 \mathrm{~m} / \mathrm{s}$	$\mathrm{E} 2=\mathrm{F} \times \mathrm{S}$	$\mathrm{E} 3=25+40=65 \mathrm{Nm} / \mathrm{C}$
$\mathrm{F}=1000 \mathrm{~N}$	$\mathrm{E} 3=\mathrm{E} 1+\mathrm{E} 2$	$\mathrm{E} 4=65 \times 500=32500 \mathrm{Nm} / \mathrm{Hr}$
$\mathrm{C}=500 / \mathrm{Hr}$	$\mathrm{E} 4=\mathrm{E} 3 \times \mathrm{C}$	$\mathrm{We}=2 \times 65 / 12=130 \mathrm{~kg}$
$\mathrm{~S}=0.04 \mathrm{~m}$	$\mathrm{We}=2 \times \mathrm{E} 3 / \mathrm{V} 2$	Model FC2540 is adequate

ex. 4 Vertical Impact with Force from Top to Bottom

(Application)

$W=100 \mathrm{~kg}$
$\mathrm{V}=1 \mathrm{~m} / \mathrm{s}$
$\mathrm{F}=1200 \mathrm{~N}$
$\mathrm{C}=400 / \mathrm{Hr}$
$\mathrm{S}=0.025 \mathrm{~m}$
(Formulas and Calculation)
$\mathrm{E} 1=0.5 \times \mathrm{W} \times \mathrm{V} 2$
$E 2=(F+W x g) \times s$
$E 3=E 1+E 2$
$\mathrm{E} 4=\mathrm{E} 3 \times \mathrm{C}$
$\mathrm{We}=2 \times \mathrm{E} 3 / \mathrm{V} 2$
$\mathrm{E} 1=0.5 \times 100 \times 12=50 \mathrm{Nm}$ $\mathrm{E} 2=(1200+100 \times 9.81) \times 0.25=54.5 \mathrm{Nm}$ $\mathrm{E} 3=50+54.5=104.5 \mathrm{Nm} / \mathrm{C}$ $\mathrm{E} 4=104.5 \times 400=41800 \mathrm{Nm} / \mathrm{Hr}$ $\mathrm{We}=2 \times 104.5 / 12=209 \mathrm{~kg}$ Model FC3625 is adequate

ex. 5 Vertical Impact with Force from Bottom to Top

(Application)	(Formulas and Calculation)	$\mathrm{E} 1=0.5 \times 200 \times 0.52=25 \mathrm{Nm}$
$\mathrm{W}=200 \mathrm{~kg}$	$\mathrm{E} 1=0.5 \times \mathrm{W} \times \mathrm{V} 2$	$\mathrm{E} 2=(3000-200 \times 9.81) \times 0.05=51.9 \mathrm{Nm}$
$\mathrm{V}=0.5 \mathrm{~m} / \mathrm{s}$	$\mathrm{E} 2=(\mathrm{F}-\mathrm{W} \times \mathrm{g}) \times \mathrm{s}$	$\mathrm{E} 3=25+51.9=76.9 \mathrm{Nm} / \mathrm{C}$
$\mathrm{F}=3000 \mathrm{~N}$	$\mathrm{E} 3=\mathrm{E} 1+\mathrm{E} 2$	$\mathrm{E} 4=76.9 \times 500=38450 \mathrm{Nm} / \mathrm{Hr}$
$\mathrm{C}=500 / \mathrm{Hr}$	$\mathrm{E} 4=\mathrm{E} 3 \times \mathrm{C}$	$\mathrm{We}=2 \times 76.9 / 0.52=615.2 \mathrm{~kg}$
$\mathrm{~S}=0.05 \mathrm{~m}$	$\mathrm{We}=2 \times \mathrm{E} 3 / \mathrm{V} 2$	Model FC3650 is adequate

ex. 6 Horizontal Impact with Motor Driving

(Application)

$\mathrm{W}=50 \mathrm{~kg}$
$\mathrm{V}=1.5 \mathrm{~m} / \mathrm{s}$
$\mathrm{ST}=2.5$
$\mathrm{HP}=2 \mathrm{KW}$
$\mathrm{C}=100 / \mathrm{Hr}$
$\mathrm{S}=0.06 \mathrm{~m}$
(Formulas and Calculation)
E1 $=0.5 \times \mathrm{W} \times \mathrm{V} 2$
$\mathrm{E} 2=1000 \times \mathrm{HP} \times \mathrm{ST} \times \mathrm{S} / \mathrm{V}$
$\mathrm{E} 3=\mathrm{E} 1+\mathrm{E} 2$
$\mathrm{E} 4=\mathrm{E} 3 \times \mathrm{C}$
$\mathrm{We}=2 \times \mathrm{E} 3 / \mathrm{V} 2$
$\mathrm{E} 1=0.5 \times 50 \times 1.52=56.25 \mathrm{Nm}$ $\mathrm{E} 2=1000 \times 2 \times 2.5 \times 0.06 / 1.5=200 \mathrm{Nm}$ $\mathrm{E} 3=56.25+200=256.25 \mathrm{Nm} / \mathrm{C}$ $\mathrm{E} 4=256.25 \times 100=25625 \mathrm{Nm} / \mathrm{Hr}$ $\mathrm{We}=2 \times 256.25 / 1.52=227 \mathrm{~kg}$ Model SC3660-2 is adequate

ex. 7 Free Fall Impact

> (Application)
> $\mathrm{W}=300 \mathrm{~kg}$
> $\mathrm{~h}=0.5 \mathrm{~m}$
> $\mathrm{C}=300 / \mathrm{Hr}$
> $\mathrm{S}=0.08 \mathrm{~m}$
(Formulas and Calculation)
E1 $=W \times g x h$
$\mathrm{E} 2=\mathrm{W} \times \mathrm{gxs}$
$\mathrm{E} 3=\mathrm{E} 1+\mathrm{E} 2$
$\mathrm{E} 4=\mathrm{E} 3 \times \mathrm{C}$
Vs $=\sqrt{2 \times g \times h}$
$\mathrm{We}=2 \times \mathrm{E} 3 / \mathrm{V} 2$
$\mathrm{E} 1=30 \times 9.81 \times 0.5=147 \mathrm{Nm}$
$\mathrm{E} 2=30 \times 9.81 \times 0.08=23.5 \mathrm{Nm}$
$\mathrm{E} 3=147+23.5=170.5 \mathrm{Nm} / \mathrm{C}$ $\mathrm{E} 4=170.5 \times 300=51150 \mathrm{Nm} / \mathrm{Hr}$ $V s=2 \times 9.81 \times 0.5=3.1 \mathrm{~m} / \mathrm{s}$
$\mathrm{We}=2 \times 170.5 / 3.12=35.5 \mathrm{~kg}$ Model SC2580-1 is adequate

ex. 8 Free Moving Load Down an Inclined Plane
(Application)
$\mathrm{W}=30 \mathrm{~kg}$
L = 1
$\theta=30^{\circ}$
$\mathrm{S}=0.04$
C $=250 / \mathrm{Hr}$
(Formulas and Calculation)
Vs $=\sqrt{2 g \times L \times \operatorname{Sin} 8}$
$\mathrm{E} 1=0.5 \times \mathrm{W} \times \mathrm{V} 2$
$\mathrm{E} 2=\mathrm{W} \times \mathrm{S} \times \operatorname{Sin} \theta$
$\mathrm{E} 3=\mathrm{E} 1+\mathrm{E} 2$
$\mathrm{E} 4=\mathrm{E} 3 \times \mathrm{C}$
$\mathrm{We}=2 \times \mathrm{E} 3 / \mathrm{V} 2$
$V=\sqrt{2 \times 9.81 \times 0.5 \times 0.5}=2.2 \mathrm{~m} / \mathrm{s}$ $\mathrm{E} 1=0.5 \times 30 \times 2.22=72.6 \mathrm{Nm}$ $\mathrm{E} 2=30 \times 0.04 \times 9.81 \times 0.5=5.9 \mathrm{Nm}$ $\mathrm{E} 3=72.6+5.9=78.5 \mathrm{Nm} / \mathrm{C}$ $\mathrm{E} 4=78.5 \times 250=19625 \mathrm{Nm} / \mathrm{Hr}$ $\mathrm{We}=2 \times 78.5 / 2.22=32 \mathrm{~kg}$ Model SC2540-1 is adequate

ex. 9 Rorary with Propelling Force

(Application)	(Formulas and Calculation)	$\mathrm{E} 1=0.25 \times 100 \times 1.12=30.3 \mathrm{Nm}$
$\mathrm{W}=100 \mathrm{~kg}$	$\mathrm{E} 1=0.25 \times \mathrm{W} \times \mathrm{V} 2$	$\mathrm{E} 2=2000 \times 0.06 / 0.8=150 \mathrm{Nm}$
$\mathrm{V}=1.1 \mathrm{~m} / \mathrm{s}$	$\mathrm{E} 2=(\mathrm{T} \times \mathrm{S}) / \mathrm{RS}$	$\mathrm{E} 3=30.3+150=180.3 \mathrm{Nm} / \mathrm{C}$
$\mathrm{T}=2000 \mathrm{Nm}$	$\mathrm{E} 3=\mathrm{E} 1+\mathrm{E} 2$	$\mathrm{E} 4=180.3 \times 100=18030 \mathrm{Nm} / \mathrm{Hr}$
$\mathrm{S}=0.06 \mathrm{~m}$	$\mathrm{E} 4=\mathrm{E} 3 \times \mathrm{C}$	$\mathrm{Vs}=1.1 \times 0.8 / 1.25=0.7 \mathrm{~m} / \mathrm{s}$
$\mathrm{RT}=1.25 \mathrm{~m}$	$\mathrm{Vs}=(\mathrm{VT} \times \mathrm{RS}) / \mathrm{RT}$	We $2 \times 180.3 / 0.72=736 \mathrm{~kg}$
$\mathrm{RS}=0.8 \mathrm{~m}$	$\mathrm{We}=2 \times \mathrm{E} 3 / \mathrm{Vs} 2$	Model SC3660-3 is adequate
$\mathrm{C}=100 / \mathrm{Hr}$		

