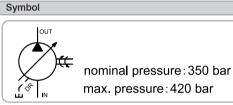


PV Series Axial Piston Pump

Description

1.New type of swash plate and large servo piston with strong bias spring achieves fast response, reduce the noise due to active decompression of system at down stroke.

2.Nine pistons and new precompression technology (precompression filter volume) result in unbeaten low outlet flow pulsation.


3.Complete compensator program offers multiple controls.

4.Rigid and FEM-optimized body design for lowest noise level.

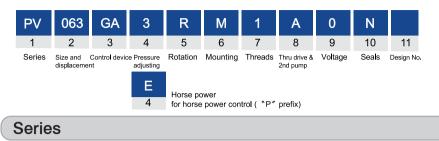
5. Thru drive for 100% nominal torque.

6.Pump combinations (multiple pumps) of same size and model and mounting interface for basically all metric or SAE mounting interfaces.

7.Wide application in automobile industrial, ships, forging machines, tire machines, injection molding machines, machine tools, special-purpose machine.

Quick Reference Data Chart

		Pres	ssure	Disp	lacemer	nt Pu	Displacement Pump Delivery (7 bar) 100 PSI						Spe	eed	Weight							
Size	Model	nomina l pressure	max. pressure	cm ³ /rev	In ³ /rev	1500 LPM) RPM U.S. GPM	1800 LPM) RPM U.S. GPM	dBA Full F 70 bar (1 KSI)	low and 15 207 bar (3 KSI)	00 RPM 343 bar (5 KSI)	Max. RPM	Min. RPM	KG (LB)							
	PV016			16	0.98	24	6.3	28.8	7.6													
	PV020	350	420	420	420	420	420	420	420	420	20	1.2	30	7.9	36	9.5						19
1	PV023			23	1.4	34.5	9.1	41.4	10.9	56	60	68	2750		(42)							
	PV028	315	350	28	1.7	42	11	50.4	13.2													
	PV032		420	32	1.9	48	12.7	57.6	15.2					2400								
	PV040	350		40	2.4	60	15.9	72	19	59												
2	PV046			46	2.8	69	18.2	82.2	21.9		62	69	2400		30 (66)							
	PV056	280	350	56	3.41	84	22.1	100.8	26.6													
	PV065	250	315	65	3.96	97.5	25.7	117	30.9													
	PV063			63	3.8	94.5	25	113.4	30				2100]								
	PV071			050 455		71	4.3	107	28.3	128.7	34				2100	300						
3	PV080	350	420	80	4.8	120	31.7	144	38	66	70	74	2000		60 (132)							
0	PV092			92	5.6	138	36.5	165.6	43.8				1900		(132)							
	PV110	250	280	110	6.7	165	43.6	198	52.3				1900									
	PV125	250	280	125	7.6	187.5	49.5	225	59.4				1900									
	PV140			140	8.5	210	55.5	252.1	66.6	70	74	76	0000									
4	PV180	350	420	180	11	270	71.3	324	85.6	71	75	77	2200		90 (198)							
	PV210	300	350	210	12.8	315	83.1	378	99.8	73	77	79	2100		. ,							
5	PV270	350	420	270	16.5	405	107	486	128.4	77	79	89	1800		172 (379)							


Technical Data

1. Outlet port is on the top, the pipe pressure should be less than 2 bar.

2. The usage of max. Pressure for each circle never exceed 6 seconds. Please see the General Installation Information for hydraulic oil clealiness manual. 3. WINMAN o ffers tandem pump or other types of pump connection. The mounting has Metric and SAE dimensions.

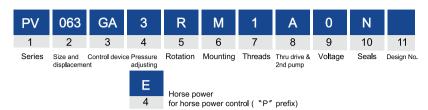
Type code for standard program

1	Axial piston pump variable
Ľ	displacement high pressure version

nominal pressure:350 bar max. pressure:420 bar

ΡV

Size and displacement


	Code		016	020	023	028	032	040	046	056	065	063	071	080	092	110	125	140	180	210	270
2	Size			Boc	ly 1			B	lody 2	2				Bod	у З			В	ody ·	4	Body 5
	Displacement	cm³/ rev	16	20	23	28	32	40	46	56	65	63	71	80	92	110	125	140	180	210	270
	Displacement	In³/ rev	0.98	1.2	1.4	1.7	1.9	2.4	2.8	3.41	3.96	3.8	7.3	4.8	5.6	6.6	7.6	8.5	11	12.6	16.5

Control device

	Standard pressure compensator	A0							
	None pressure compensator (fixed displacement) (pressure protection required)	LN							
	Electrical 2-stage flow compensator (pressure protection required)	LS							
	Fixed displacement 2-stage flow compensator (pressure protection required)	LC							
	Remote type								
	Remote pressure compensator with NG6 interface	GM							
	Remote pressure compensator + Relief valve	GA							
	Remote pressure compensator + Proportional pressure valve	GJ							
	Electrical unloading type								
	Remote pressure compensator + Electrical unloading	GR							
	Remote pressure compensator + 2-stage pressure control	GB							
	Remote pressure compensator + Electrical unloading + 2-stage pressure control	GC							
	Load-sensing type								
3	Load-sensing compensator with NG6 interface	HM							
	Load-sensing compensator + Relief valve	HA							
	Load-sensing compensator + Proportional pressure valve	HJ							
	Load-sensing + Electrical unloading type								
	Load-sensing compensator + Electrical unloading	HR							
	Load-sensing compensator + 2-stage pressure control	HB							
	Load-sensing compensator + Electrical unloading + 2-stage pressure control	HC							
	Proportional pressure, flow type								
	Load-sensing compensator + Proportional flow valve + Relief valve	HQ							
	Load-sensing compensator + Proportional pressure valve + Proportional flow valve	HK							
	None-stage flow compensator (Cylinder)	BQ							
	2-valve load-sensing type								
	2-valve load-sensing compensator with NG6 interface	VM							
	2-valve load-sensing compensator + Relief valve	VA							
	2-valve load-sensing compensator + Proportional pressure valve	VJ							

Type code for standard program

Control device

	2-valve proportional pressure, flow type	
	2-valve load-sensing compensator + Proportional flow valve + Relief valve	VQ
	2-valve load-sensing compensator + Proportional pressure valve + Proportional flow valve	VK
	Proportional compensation type	
	2-valve load-sensing compensator + High reacted proportional flow valve + Flow feed back+ Relief valve	FV
	2-valve load-sensing compensator + High reacted proportional flow valve + Proportional pressure + Flow & Pressure feed back	FG
3	Horse power type	
	Horse power compensator with NG6 interface	РМ
	Horse power compensator + Relief valve	PA
	Horse power compensator + Proportional pressure valve	PJ
	Horse power compensator + Relief valve + Electrical unloading	PR
	Horse power load-sensing compensator + Relief valve	PH
	Horse power load-sensing compensator + Proportional flow valve + Relief valve	PQ
	Horse power load-sensing compensator + Proportional pressure valve	PS

Pressure adjustment

	10~140 bar (145~2030 PSI)	2
	35~250bar (507~3625 PSI)	3
4	40~280bar (580~4060 PSI)	4
	50~315bar (725~4567 PSI)	5
	70~350bar (1015~5075 PSI)	6

Pressure range for each displacement

2 3 4 5 6

	PV016~PV023				
	PV028				-
	PV032~PV046				
	PV056			-	-
4	PV065		-	-	-
4	PV063~PV092				
	PV110,PV125		-	-	-
	PV140,PV180				
	PV210			-	-
	PV270				

Type code for standard program

Pressure range for each control device:

ressu	re range for each control device:	2	3	4	5	6
A0	Standard pressure compensator					
LN	None pressure compensator (fixed displacement) (pressure protection required)				•	•
LS	Electrical 2-stage flow compensator (pressure protection required)	•	•	•	-	•
LC	Fixed displacement 2-stage flow compensator (pressure protection required)				-	•
Re	mote type					
GN	Remote pressure compensator with NG6 interface			•		
GA	Remote pressure compensator + Relief valve					
GJ	Remote pressure compensator + Proportional pressure valve			-	-	-
Ele	ectrical unloading type					
GR	Remote pressure compensator + Electrical unloading					
GB	Remote pressure compensator + 2-stage pressure control					
GC	Remote pressure compensator + Electrical unloading + 2-stage pressure control					•
Loa	ad-sensing Type	-	-	-		-
НМ	Load-sensing compensator with NG6 interface					
	Load-sensing compensator + Relief valve					
4 HJ	Load-sensing compensator + Proportional pressure valve			-	-	-
Loa	ad-sensing + Electrical unloading type					
HR	Load-sensing compensator + Electrical unloading					
HB	Load-sensing compensator + 2-stage pressure control			•		
HC	Load-sensing compensator + Electrical unloading + 2-stage pressure control	•	•	•	-	
Pro	portional pressure, flow type					
HQ	Load-sensing compensator + Proportional flow valve + Relief valve					
HK	Load-sensing compensator + Proportional pressure valve + Proportional flow valve	•	•	-	-	-
BQ	None-stage flow compensator (Cylinder)					
2-V	/alve load-sensing type					
VM	2-valve load-sensing compensator with NG6 interface					
VA	2-valve load-sensing compensator + Relief valve					
VJ	2-valve load-sensing compensator + Proportional pressure valve			-	-	-
2-v	alve proportional pressure, flow type					
VQ	2-valve load-sensing compensator + Proportional flow valve + Relief valve			•	•	
VK	2-valve load-sensing compensator + Proportional pressure valve + Proportional flow valve			-	-	-

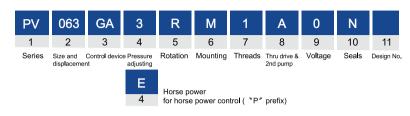
Type code for standard program

Pressure range for each control device:

Pre	essure range for each control device:	2	3	4	5	6
	Proportional compensation type					
	 FV 2-valve load-sensing compensator + High reacted proportional flow valve + Flow feed back + Relief valve 	-	•	-	-	•
	 FG 2-valve load-sensing compensator + High reacted proportional flow valve + Proportional pressure + Flow & Pressure feed back 	-	•	•	-	•
	Horse power type					
4	PM Horse power compensator with NG6 interface					
	PA Horse power compensator + Relief valve					
	PJ Horse power compensator + Proportional pressure valve			-	-	-
	PR Horse power compensator + Relief valve + Electrical unloading					
	PH Horse power load-sensing compensator + Relief valve					
	PQ Horse power load-sensing compensator + Proportional flow valve + Relief valve	-	-			
	PS Horse power load-sensing compensator + Proportional pressure valve	•	•	-	-	-

WWINMAN[®]

PV Series


Type code for standard program

_	71				•								
P \ 1	V 06			R N 5 6	A 1 A	0 N 9 10 11							
Ser	ies Size a	-				/oltage Seals Design No.							
	uispia	coment	E		2nd pump								
			Ho	rse power horse powe	er control (ັ°P″ prefix)								
Pressure adjusting (Please following page A-41~43)													
	Displacement				Horse power								
	PV016~PV023,28			A 3KW	3KW B 4KW C 5.5KW D 7.5KW E 11KW								
	PV032	2~PV04	6,56,65		C 5.5KW D 7.5KW E 11KW F 15KW G 18.5KW H 22KW								
4	PV063	8~PV09	2,110,125	E 11KV	11KW F 15KW G 18.5KW H 22KW I 30KW J 37KW K 45KW								
	PV140				G 18.5KW H 22KW I 30KW J 37KW K 45KW L 55KW								
	PV180			H 22K	22KW I 30KW J 37KW K 45KW L 55KW M 75KW N 90KW								
	PV270)			J_37KV	V K 45KW L 55K	W M 75KW N 90KV	V O 110KW P 132KW					
F	Rotatic	on											
	\bigcirc	Clockv	vise					R					
5	G	Counte	er clockwis	e				L					
N	lounti	ng											
	Body												
	Mounting Metric Metric			2	3	4	5						
_			A-52)	M R (A-60)	M R (A-68)	M R Q (A-75)	M R (A-82)						
6		Splined	KS	A-52)	K S P (A-60)	K S (A-68)	K S P (A-75)	K S (A-82)					
	Inch	Parallel keyed	Ν	A-54)	N J (A-62)	N J (A-70)	N J F (A-77)	N J (A-84)					
		Splined	DU	A-54)	D U G (A-62)	D U (A-70)	D U G (A-77)	D U (A-84)					
Т	hread	s					(Dimensions refe	r to dimension diagram)					
	BSP	P (G)						1 *					
7	PT (F	RC)						2					
7	UNF	(SAE)						3					
	ISO	6149 (N	1)					7					
Tł	nru dri	ive & 2	nd pump										
	D	isplace	ement			Code							
		6~PV2		Α	Single pump B Pre	pared for thru drive							
		6~PV0			D E								
8			46,56,65		DEF	IJKL							
	PV06	3~PV0	92,110,12	5	DEFG	IJKLM							
	PV14	0~PV1	80,210		DEFG	JKLM							
	PV270 DEFGH JKLMN												

= available - = on request imes = standard type

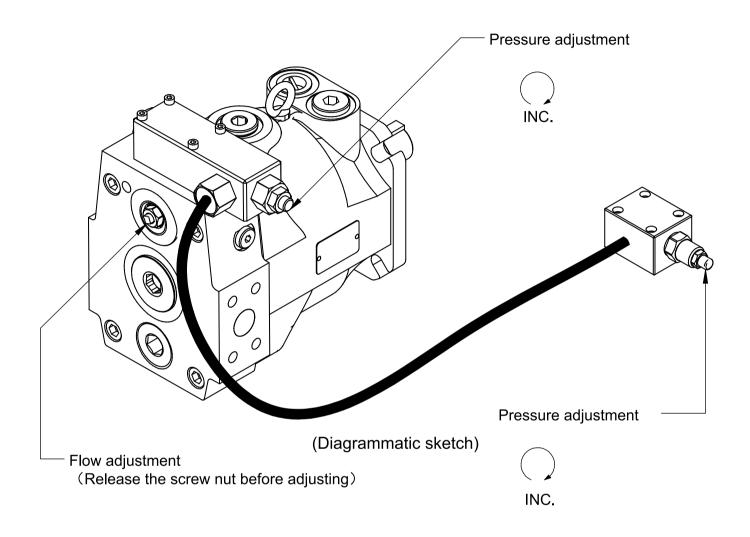
Type code for standard program

Size

	SAE AA, Ø50.8 mm	С
	SAE A, Ø82.55 mm	D
	SAE B, Ø101.6 mm	E
	SAE C, Ø127 mm	F
	SAE D, Ø152.4 mm	G
8	SAE E, Ø165.1 mm	Н
0	Metric, Ø63 mm	I
	Metric, Ø80 mm	J
	Metric, Ø100 mm	К
	Metric, Ø125 mm	L
	Metric, Ø160 mm	М
	Metric, Ø200 mm	N
\ \	Voltage Other pumps a	re acceptable to order

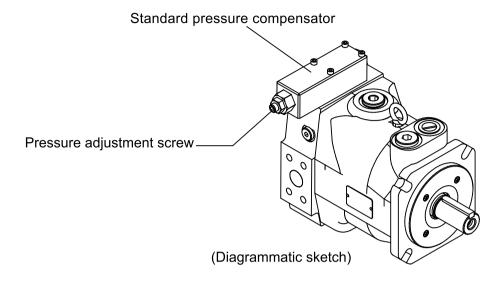
Voltage

9	None AC100V (50/60HZ) AC110V (60HZ) AC200V (50/60HZ) AC220V (60HZ) DC 12V	0 A B C D E	
	DC 24V Seals	F	
	NBR	N	*
10	VITON, FKM	V	
	Ethylen-propylene	E	


= available - = on request ※ = standard type

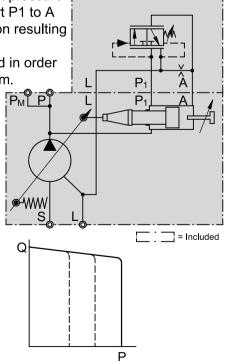
DEC.

PV Series


Pressure & Flow Adjustment

A-8

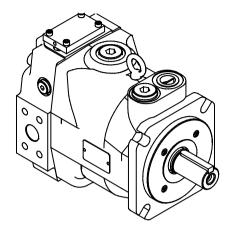
A0 Standard pressure compensator


A0 Standard pressure compensator

The standard pressure compensator adjusts the pump displacement according to the actual need of the system in order to keep the pressure constant.

As long as the system pressure at outlet port P is lower than the set pressure (set as spring preload of the compensator spring) the working port A of the compensator valve is connected to the case drain and the piston area is unloaded. Bias spring and system pressure on the annulus area keep the pump at full displacement.

When the system pressure reaches the set pressure the compensator valve spool connects port P1 to A and builds up a pressure at the servo piston resulting in a downstroking of the pump.

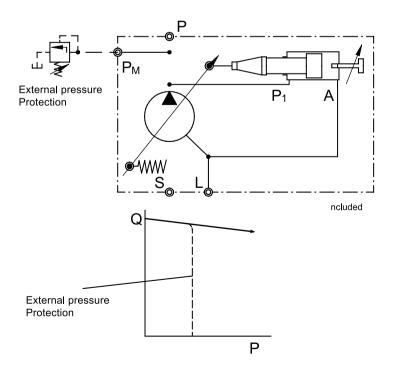

The displacement of the pump is controlled in order to match the flow requirement of the system.



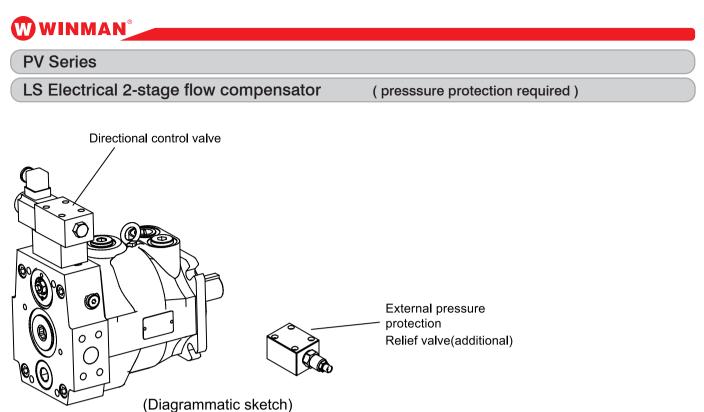
LN Nona pressure compensator

(fixed displacement) (pressure protection required)

External pressure protection Relief valve(additional)


(Diagrammatic sketch)

LN None pressure compensator (fixed displacement) (pressure protection required)

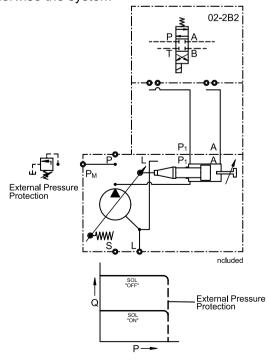

By using the system under stable displacement and pressure situation, standard pressure compensator can be omitted which helps cost down.

Notice:

External pressure protection is necessarily added at port PM to limit the pressure;otherwise the system pressure will be over high .

A-10

(Diagrammatic sketch)

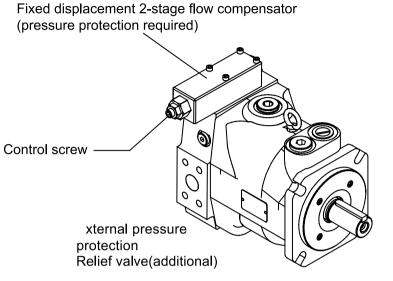

LS Electrical 2-stage flow compensator (pressure protection required)

Control the hydraulic circuit change by suing directional control valve.

LS control is applied to two-stage stroke and different speed system.

Notice:

External pressure protection is necessarily added at port PM to limit the pressure; otherwise the system pressure will be over high.

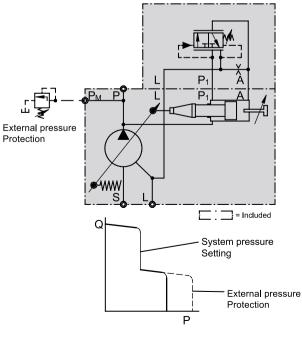


A-11

LS Fixed displacement 2-stage flow compensator

(presssure protection required)

(Diagrammatic sketch)


LC Fixed displacement 2-stage flow compensator (pressure protection required)

Control the hydraulic circuit change by using the system pressure setting to achieve the switch of big and small flow.

LS control is applied to two-stage stroke and different speed system.

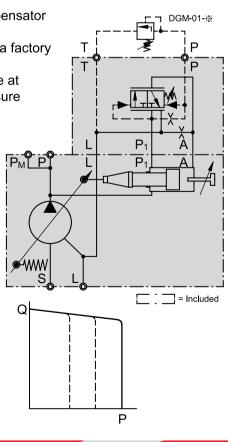
Notice:

External pressure protection is necessarily added at port PM to limit the pressure;otherwise the system pressure will be over high.

WINMAN[®]

GM Remote pressure compensator with NG6 interface

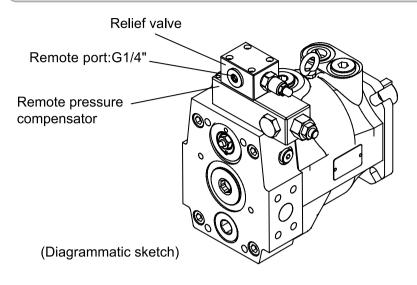
Remote pressure compensator with NG6 interface


GM Remote pressure compensator with NG6 interface

Version GM of the remote pressure compensator provides on its top side an interface NG6,DIN24340(CETOP 03 at RP35H, NFPA D03).

This interface allows a direct mounting of a pilot valve. Beside manual or electrohydraulic operated valves, it is also possible to mount complete multiple pressure circuits directly on the compensator body.

WINMAN offers a variety of these compensator accessories ready to install.

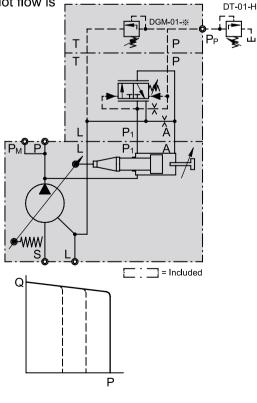

All remote pressure compensator have a factory setting of 15 bar differential pressure. With this setting, the controlled pressure at the pump outlet is higher than the pressure controlled by the pilot valve.

WINMAN

PV Series

GA Remota pressure compensator + Relief valve

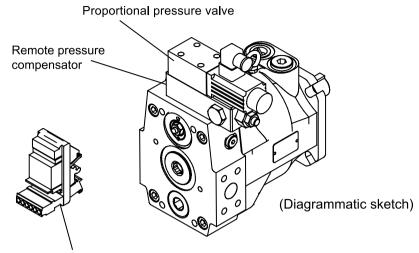
GA Remote pressure compensator + Relief valve


The pressure is set directly at the compensator spring, and the setting of remote pressure compensator can be achieved by any suitable pilot pressure valve connected to pilot port PP.

The pilot valve can be installed remote from the pump in some distance.

That allows pressure setting, e.g. from the control panel of the machine. The pilot flow supply is internal

through the valve spool, and the pilot flow is

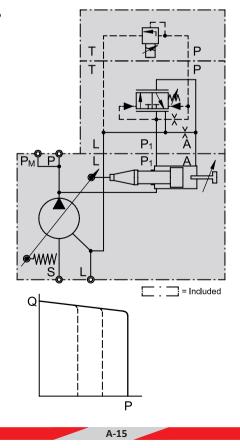

1~1.5 L/min.

WWINMAN[®]

GJ Remote pressure compensator + Proportional pressure valve

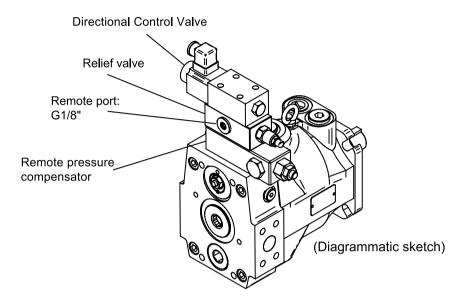
Electronic amplifier P-C board

GJ Remote pressure compensator


+ Proportional pressure valve

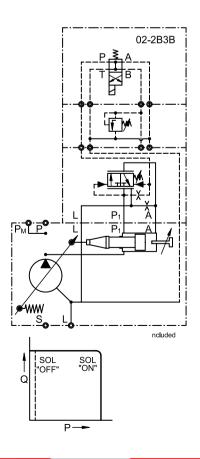
Fulfill the actual displacement and maintain the preset system pressure.

By adding WINMAN proportional pressure valve, electrical proportional pressure control is available.


% Proportional pressure max.250 bar. If needing any other pressure range,

please contact WINMAN .

GR Remote pressure compensator + Electrical unloading



GR Remote pressure compensator + Electrical unloading

By adding a relief valve and a directional control valve on the compensator makes the pump have both function. GR control is for long unloading situation.

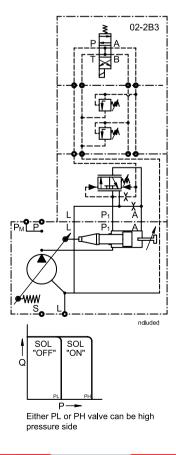
When the system stops, oil temperature and noise main-

tain low level while being through the unloading.

WINMAN

PV Series

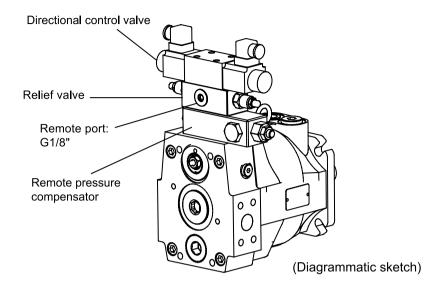
GB Remote pressure compensator + 2-stage pressure control



GB Remote pressure compensator

+ 2-stage pressure control

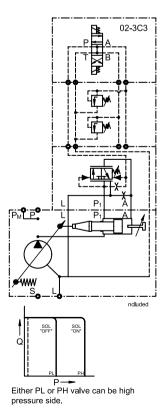
By adding a relief valve and directional control valve on the compensator makes it adjust two different stage limited pressure.


GB control is for two-stage working pressure under the constant cylinder speed.

WINMAN

PV Series

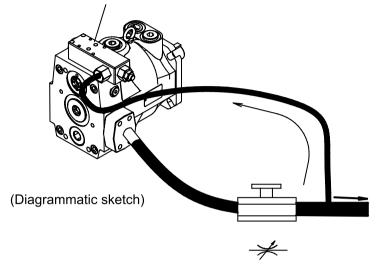
GC Remote pressure compensator + Electrical unloading + 2-stage pressure control



GC Remote pressure compensator + Electrical unloading + 2-stage pressure control

Control two different-stage limited pressure by adding directional control valve, and unloading function.

When the system stops, oil temperature and noise maintain low level by unloading function.


Usable for stable cylinder speed, two-stage pressure, and long unloading situation.

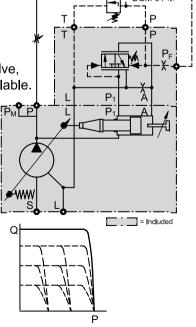
HM Load-sensing compensator with NG6 inferface

Load-sensing compensator with NG6 interface

M Load-sensing compensator with NG6 interface

Version HM of remote pressure compensator provides an interface NG6 on its top side.

The load-sensing compensator has an external pilot pressure supply.

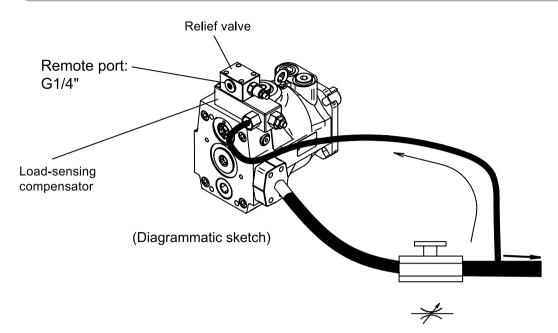

Factory setting for the differential pressure is 10 bar.

The input signal to the compensator is the differential pressure at the main stream resistor.

A load-sensing compensator represents mainly a flow control for the pump output flow, because the compensator keeps the pressure drop at the main stream resistor constant.

A variable input speed or a varying load (-pressure)has consequently no influence on the output flow of the pump and the speed of the actuator.

By adding WINMAN proportional pressure valve, electrical proportional pressure control is available.



DGM-01-%

WINMAN

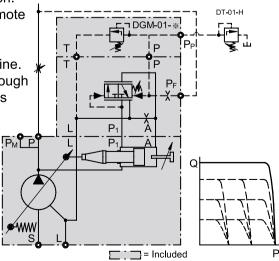
PV Series

HA Load-sensing compensator + Relief valve

HA Load-sensing compensator + Relief valve

The load-sensing compensator has an external pilot pressure supply.

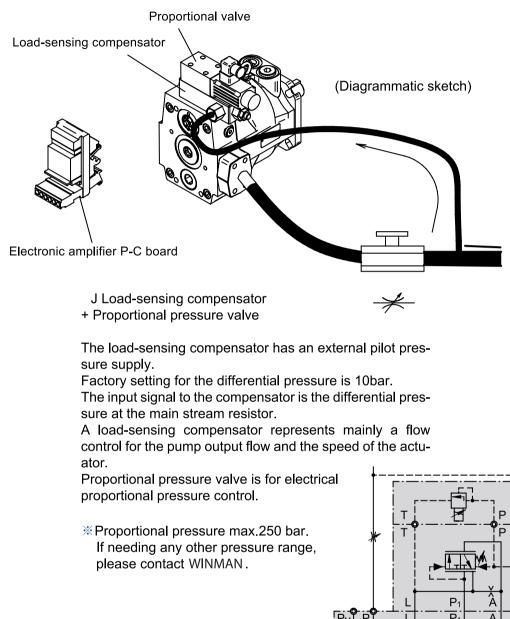
Factory setting for the differential pressure is 10bar.

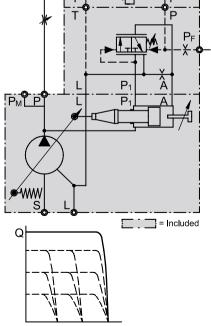

The input signal to the compensator is the differential pressure at the main stream resistor.

A load-sensing compensator represents mainly a flow control for the pump output flow, because the compensator keeps the pressure drop at the main stream resistor constant.

A variable input speed or a varying load(-pressure) has consequent no influence on the output flow of the pump and the speed of the actuator.

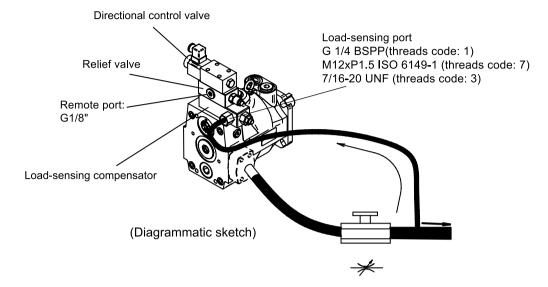
Relief valve has adjustment function.


The pilot valve can be installed remote form the pump in some distance. That allows pressure setting, e.g. form the control panel of the machine. The pilot flow supply is internal through the valve spool, and the pilot flow is 1-1.5 L/min.



WINMAN

PV Series

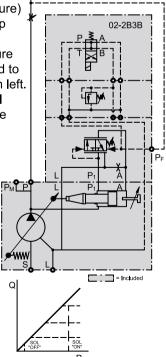

HJ Load-sensing compensator + Proportional pressure valve

HR Load-sensing compensator + Electrical unloading

HR Load-sensing compensator + Electrical unloading

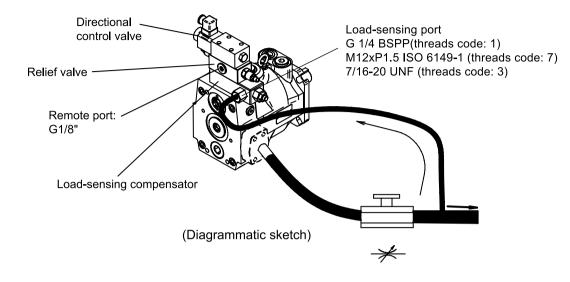
The load-sensing compensator has all external pilot pressure supply.

Factory setting for the differential pressure is 10bar.


The input signal to the compensator is the differential pressure at the main stream resistor.

A load-sensing compensator represents mainly a flow control for the pump output flow, because the compensator keeps the pressure drop at the main stream resistor constant.

A variable input speed or a varying (load -pressure) has consequently on the output flow of the pump and speed of the actuator.


By adding a pilot orifice (Φ 0.8mm) and a pressure pilot valve pressure compensation can be added to the flow control function. See the circuit diagram left. By adding a relief valve and a directional control valve on the compensator makes the pump have both function.

HR control is for long unloading situation. When the system stops, oil temperature and noise maintain low level while being through the unloading.

HB Load-sensing compensator + 2-stage pressure control

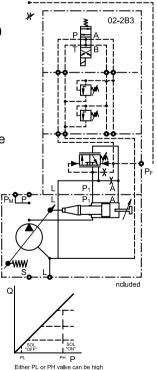
HB Load-sensing compensator + 2-stage pressure control

The load-sensing compensator has an external pilot pressure supply.

Factory setting for the differential pressure is 10bar.

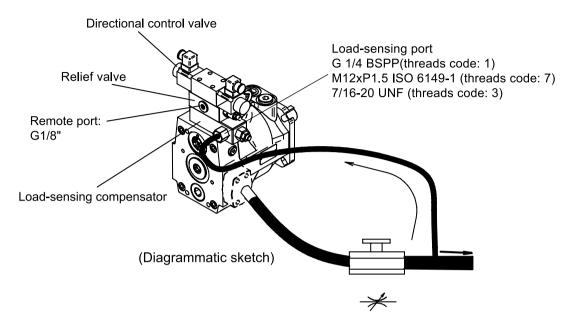
The input signal to the compensator is the differential pressure at the main stream resistor.

A load-sensing compensator represents mainly a flow control for the pump output flow, because the compensator keeps the pressure drop at the main stream resistor constant.


A variable input speed or a varying (load -pressure) has consequently on the output flow of the pump and speed of the actuator.

By adding a pilot orifice (Φ 0.8mm) and a pressure pilot valve pressure compensation can be added to the flow control function.

See the circuit diagram left.


By adding a relief valve and directional control valve on the compensator makes it adjust two different stage limited pressure.

HB control is for two-stage working pressure under the constant cylinder.

HC Load-sensing compensator + Electrical unloading + 2-stage pressure control

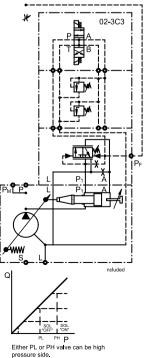
HC Load-sensing compensator + Electrical unloading + 2-stage pressure control

The load-sensing compensator has an external pilot pressure supply. Factory setting for the differential pressure is 10bar.

The input signal to the compensator is the differential pressure at the main stream resistor.

A load-sensing compensator represents mainly a flow control for the pump output flow, because the compensator keeps the pressure drop at the main stream resistor constant.

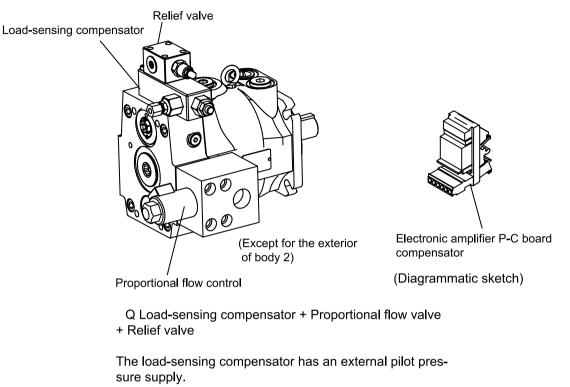
A variable input speed or a varying (load -pressure) has consequently on the output flow of the pump and speed of the actuator.


By adding a pilot orifice (Φ 0.8mm) and a pressure pilot valve pressure compensation can be added to the flow control function.

See the circuit diagram left.

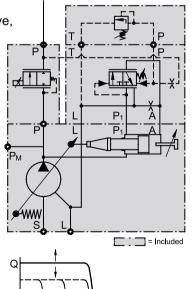
By adding a relief valve and a directional control valve on the compensator makes the pump have both function.

HC control is for long unloading situation.

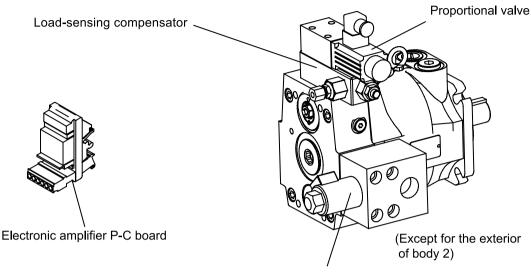

When the system stops, oil temperature and noise maintain low level while being through the unloading.

WWINMAN[®]

PV Series


HQ Load-sensing compensator + Proportional flow valve + Relief valve

Factory setting for the differential pressure is 10bar. The input signal to the compensator is the differential pressure at the main stream resistor.


A load-sensing compensator represents mainly a flow control for the pump output flow, because the compensator keeps the pressure drop at the main stream resistor constant.

By adding WINMAN proportional flow valve, electrical proportional flow control is available.

HK Load-sensing compensator + Proportional presure valve + Proportional flow valve

(Diagrammatic sketch)

Proportional flow control

HK Load-sensing compensator + Proportional pressure valve

+ Proportional flow valve

HK is for saving energy.

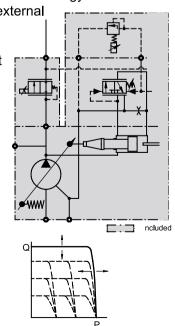
It offers the smallest pressure and flow according to the different requirement.

The displacement is nearly zero when the system stands by, and the motor output is also nearly zero.

When the system reaches setting pressure, the pump displacement will reduce by itself. It only needs to add the system required flow, and the pressure remains the same which control the oil temperature.

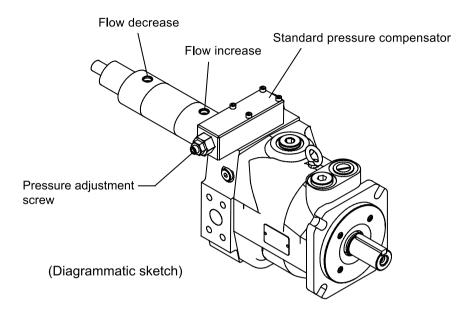
Compared with vane pump, gear pump + PQ valve can save 30%-50% energy.

The load-sensing compensator + proportional flow valve has all external pilot pressure supply.


Factory setting for the differential pressure is 10 bar.

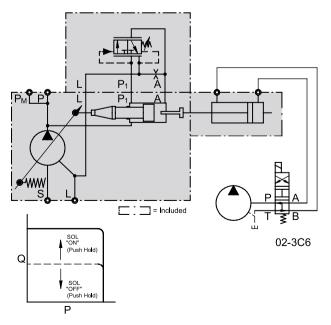
The input signal to the compensator is the differential pressure at the main stream resistor.

A load-sensing compensator represents mainly a flow control for the pump output flow of the pump and the speed of the actuator. Proportional pressure valve is for electrical proportional pressure control.


※ Proportional pressure max.250 bar.

If needing any other pressure range, please contact WINMAN.

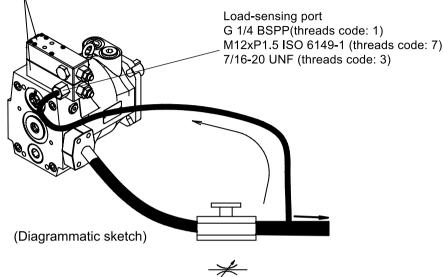
BQ None-stage flow compensator (Cylinder)



one-stage flow compensator (Cylinder)

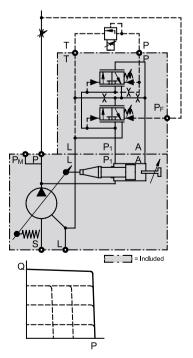
Using added cylinder, external pilot pressure controls the forward and backward, and push the swash plate to change directions and make the single-stage pressure control.

Displacement can be zero to Max, and pressure remains on setting pressure. Automatous flow control is much easier to repair, and cheaper than electrical proportional flow control.


External control is more automated by using solenoid valve or hydraulic directional valve.

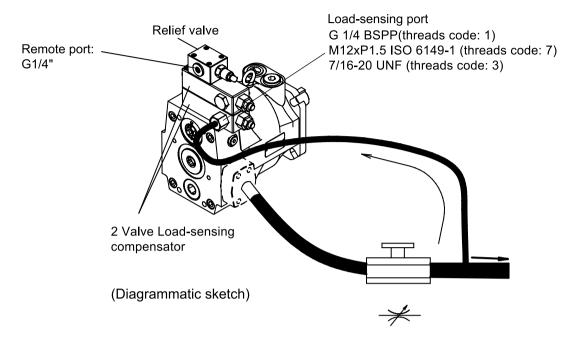
VM 2-valve load-sensing compensator with NG6 interface

2-valve Load-sensing compensator with NG6 interface


VM 2-valve load-sensing compensator with NG6 interface

VM 2-valve load-sensing compensator with NG6 interface is an option for limiting pressure precisely.

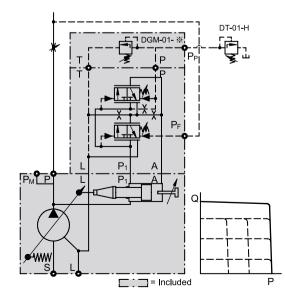
By eliminating the impact between pressure and flow, the pump should add two different valves to control flow and pressure.

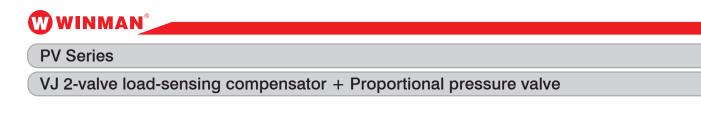

Version VM provides on its top side an interface NG6 which has pressure-adjusted function.

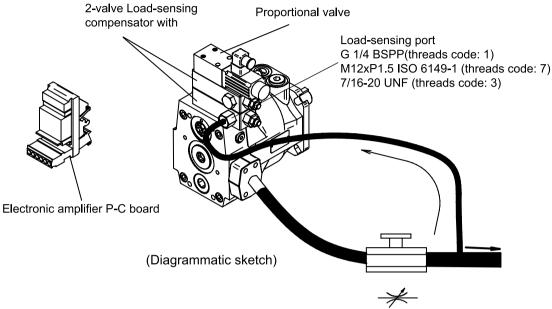
If adding a WINMAN proportional pressure control valve, electrical proportional pressure control is available.

VA 2-valve load-sensing compensator + Relief valve

VA 2-valve load-sensing compensator + Relief valve

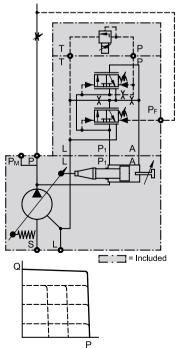

VA 2-valve load-sensing compensator with NG6 interface is an option for limiting pressure precisely.


By eliminating the impact between pressure and flow, the pump should add two different valves to control flow and pressure.


The pilot valve if free to be installed to remote in some distance.

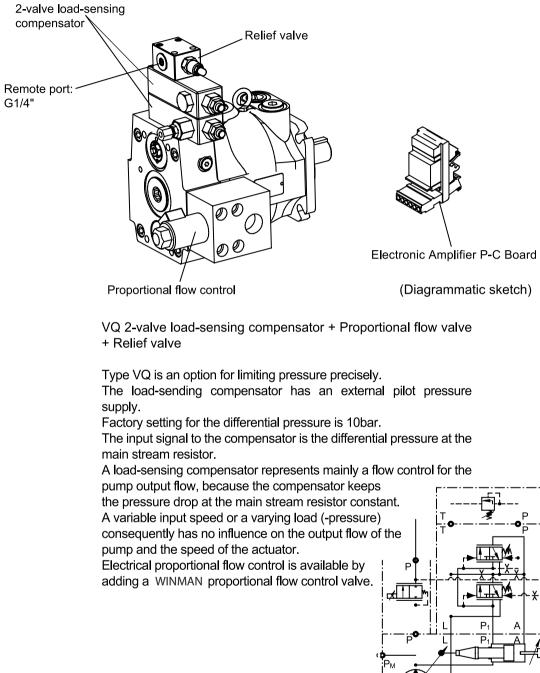
That allows pressure setting e.g. from the control panel of the machine.

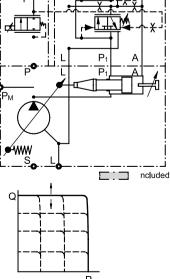
The pilot flow supply is internal through the valve spool, and the pilot flow is 1-1.5 L/min.


VJ 2-valve load-sensing compensator + Proportional pressure valve

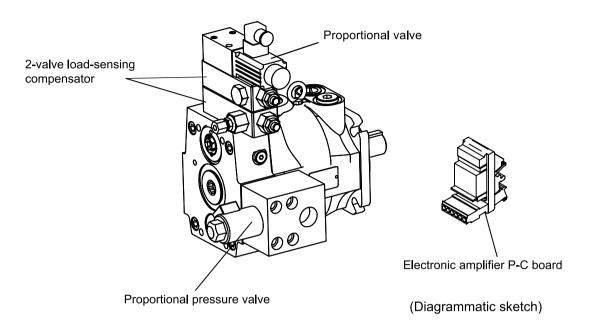
VJ 2-valve load-sensing compensator with NG6 interface is an option for limiting pressure precisely.

By eliminating the impact between pressure and flow, the pump should add two different valves to control flow and pressure.


Electrical proportional and pressure control is available by adding a WINMAN proportional pressure valve on the Load-sensing compensator.


Proportional pressure max.250 bar. If needing any other pressure range, please contact WINMAN.

VQ 2-valve load-sensing compensator + Proportional flow valve + Relief valve



A-31

WWINMAN[®]

PV Series

VK 2-valve load-sensing compensator + Proportional pressure valve + Proportional flow valve

VK 2-Valve load-sensing compensator + Proportional pressure valve

+ Proportional flow valve

VK control has the same characters as HK control for saving energy.

It offers the smallest pressure and flow according to the different request.

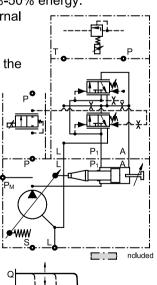
The displacement is nearly zero when the system stands by, and the motor output is also nearly zero.

When the system reaches setting pressure, the pump displacement will reduce by itself. It only needs to add the system required flow, and the pressure remains the same which control the oil temperature.

Compared with vane pump, gear pump + PQ valve can save 30%-50% energy.

The load-sensing compensator+ Proportional flow valve has external pilot pressure supply.

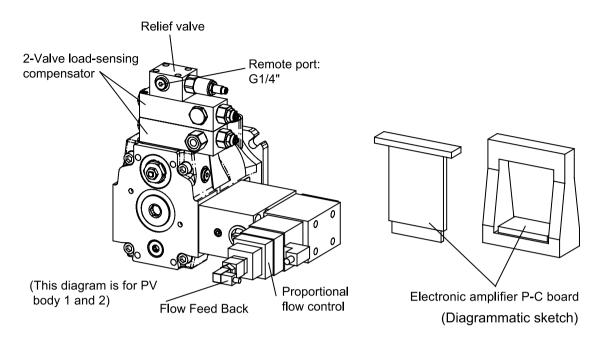
Factory setting for the differential pressure is 10 bar.


The input signal to the compensator is the differential pressure at the main stream resistor.

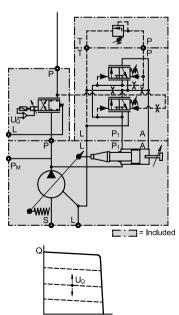
A load-sensing compensator represents mainly a flow control for the pump output flow of the pump and the speed of the actuator.

Proportional pressure valve is for electrical proportional pressure control.

※ Proportional pressure max.250 bar.

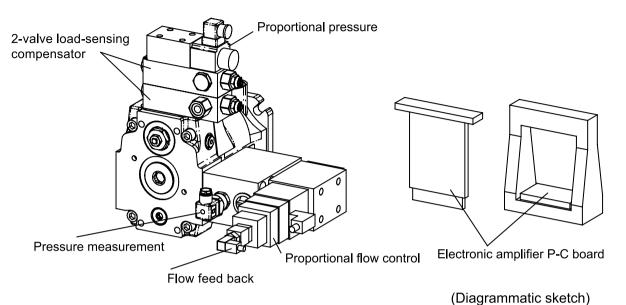

If needing any other pressure range, please contact WINMAN .

FV 2-valve load-sensing compensator + High reacted proportional flow valve + Flow feed back + Relief valve


FV 2-valve load-sensing compensator + High reacted proportional flow valve + Flow feed back + Relief valve

FV control is an option for limiting pressure precisely.

By eliminating the impact between pressure and flow, the pump should add two different valves to control flow and pressure.


The electrical contro permanently compares input command and actual displacement and powers the proportional flow solenoid of the control valve. A deviation from the commanded displacement leads to a modulation of the input current to the solenoid.

The control valve changes the control pressure until the correct displacement is adjusted.

FG 2-valve load-sensing compensator + High reacted proportional flow valve + Proportional pressure + Flow & Pressure feed back

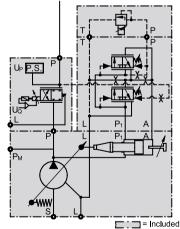
(This diagram is for PV body 1 and 2)

FG 2-valve load-sensing compensator + High reacted proportional flow valve

+ Proportional pressure + Flow& Pressure feed back

FG control is an option for limiting pressure precisely.

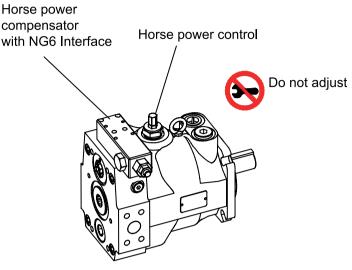
By eliminating the impact between pressure and flow, the pump should add two different valves to control flow and pressure.


By adding a WINMAN proportional pressure valve, it would be electrical proportional pressure control.

The electrical control permanently compares input command and actual displacement and powers the proportional flow solenoid of the control valve.

A deviation from the commanded displacement leads to a modulation of the input current to the solenoid.

The control valve changes the control pressure until the correct displacement is adjusted.


Adding a pressure sensor achieves pressure feedback control.

PM Horse power compensator with NG6 interf

(Diagrammatic sketch)

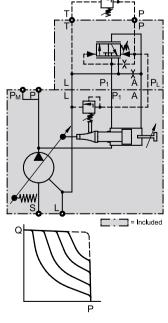
PM Horse power compensator with NG6 interface

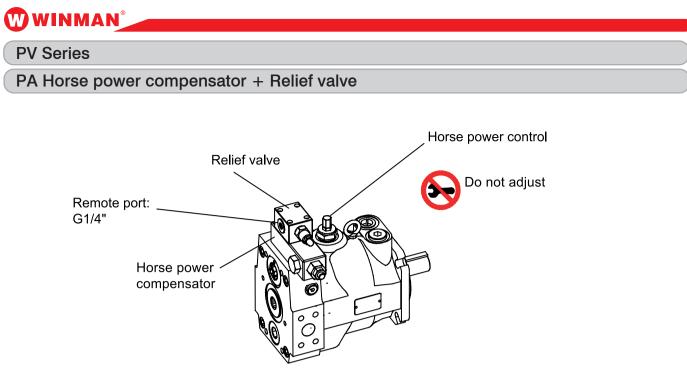
The hydraulic-mechanical horse power compensator consists of a modified remote pressure compensator or of a modified load-sensing compensator and a pilot valve.

This pilot valve is integrated into the pump and is adjusted by a cam sleeve.

The cam sleeve has a contour that is designed and machined for the individual displacment and the nominal horse power setting.

At a large displacement the opening pressure (given by the cam sleeve diameter) is lower than at small displacements.


This makes the pump compensate along a constant horse power (torque) curve.


Horse power is optional when order.

Working pressure can be adjusted by adding WINMAN pressure leading valve.

Adding the proportional pressure valve achieves the electrical proportional pressure control.

※Horse power setting,please following type code.

(Diagrammatic sketch)

PA Horse power compensator + Relief valve

The hydraulic-mechanical horse power compensator consists of a modified remote pressure compensator or of a modified load-sensing compensator and a pilot valve.

This pilot valve is integrated into the pump and is adjusted by a cam sleeve.

The cam sleeve has a contour that is designed and machined for the individual displacement and the nominal horse power setting.

At a large displacement the opening pressure (given by the cam sleeve diameter) is lower than at small displacements.

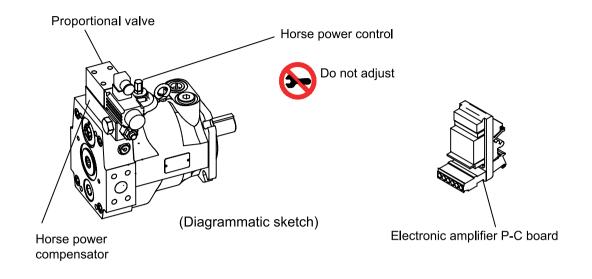
This makes the pump compensate along a constant horse power (torque) curve.

Horse power is optional when order.

Working pressure can be adjusted by adding WINMAN pressure leading valve.

Adding the proportional pressure valve achieves the electrical proportional pressure control. The pilot valve can be installed remote from the pump in some distance.

That allows pressure setting e.g. from the control panel of the machine.


The pilot flow supply is internal through the valve spool and the pilot flow is 1-1.5 L/min.

× Horse power setting, please following type code.

PJ Horse power compensator + Proportiona pressure valve

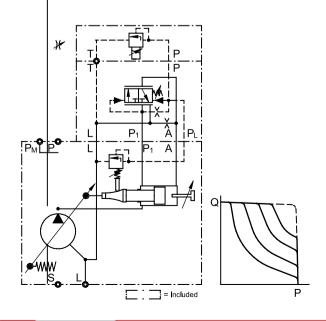
PJ Horse power compensator + Proportional pressure valve

The hydraulic- mechanical horse power compensator consists of a modified remote pressure compensator or of a modified load-sensing compensator and a pilot valve.

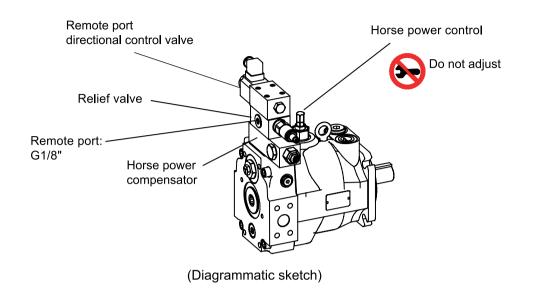
This pilot valve is integrated into the pump and is adjusted by a cam sleeve.

The cam sleeve has a contour that is designed and machined for the individual displacement and the nominal horse power setting.

At a large displacement the opening pressure (given by the cam sleeve diameter) is lower than at small displacements.


This makes the pump compensate along a constant horse power (torque) curve.


Pressure-adjusted function is optional by adding a leading proportional pressure valve.


* Horse power setting, please following type code.

※ Proportional pressure max.250 bar.

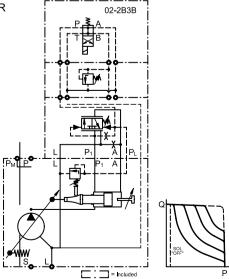
If needing any other pressure range, please contact WINMAN .

PR Horse power compensator + Electrical unloading

The hydraulic-mechanical horse power compensator consists of a modified remote pressure compensator or of a modified load-sensing compensator and a pilot valve.

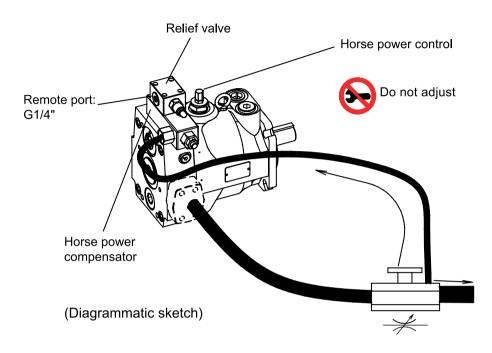
This pilot valve is integrated into the pump and is adjusted by a cam sleeve.

The cam sleeve has a contour that is designed and machined for the individual displacement and the nominal horse power setting.


At a large displacement the opening pressure (given by the cam sleeve diameter) is lower than at small displacements.

This makes the pump compensate along a constant horse power (torque) curve.

Electrical unloading function is optional by adding an electric directional control valve. This control is suitable for long period of unloading.


Oil temperature and noise remain low level through out the electrical unloading function when the system stops working.

× Horse power setting, please following type code.

WWINMAN°

PH Horse power load-sensing compensator + Relief valve

PH Horse power load-sensing compensator + Relief valve

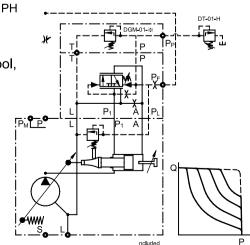
The hydraulic-mechanical horse power compensator consists of a modified remote pressure compensator or of a modified load-sensing compensator and a pilot valve.

This pilot valve is integrated into the pump and is adjusted by a cam sleeve.

The cam sleeve has a contour that is designed and machined for the individual displacement and the nominal horse power setting.

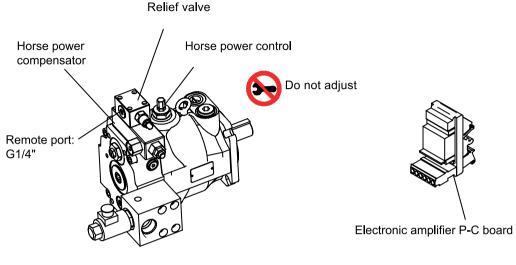
At a large displacement the opening pressure (given by the cam sleeve diameter) is lower than at small displacements.

This makes the pump compensate along a constant horse power (torque) curve. Horse power is optional when order.


Working pressure can be adjusted by adding a leading valve on the compensator, and pump flow can also be adjusted on the first pipe by adding an external feedback on the PF port as a control signal on the main stream.

The pilot valve can be installed remote from the pump in some distance.

That allows pressure setting, e.g. from the contral panel of the machine.


The pilot flow supply is internal through the valve spool, and the pilot flow is $1\sim1.5$ L/min.

※Horse power setting, please following type code.

PV Series

PQ Horse power load-sensing compensator + Proportional flow valve + Relief valve

(Diagrammatic sketch)

PQ Horse power load-sensing compensator + Proportional flow valve + Relief valve

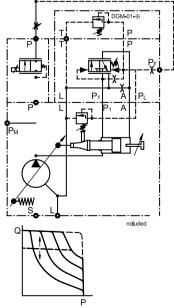
The hydraulic-mechanical horse power compensator consists of a modified remote pressure compensator or of a modified load-sensing compensator and a pilot valve.

This pilot valve is integrated into the pump and is adjusted by a cam sleeve.

The cam sleeve has a contour that is designed and machined for the individual displacement and the nominal horse power setting.

At a large displacement the opening pressure (given by the cam sleeve diameter) is lower than at small displacements.

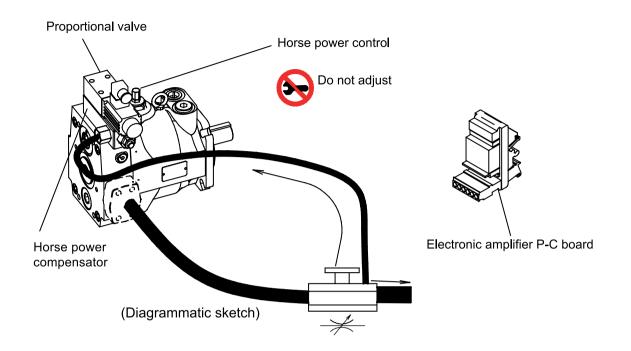
This makes the pump compensate along a constant horse power (torque) curve.


Pressure can be adjusted by adding a leading valve in the

compensator, and pump flow can also be adjusted on the first

pipe by adding an external feedback on the PF port as a control signal on the main stream.

Adding a proportional flow control valve on the P port achieves electrical proportional flow control.


* Horse power setting, please following type code.

WINMAN

PV Series

PS Horse power load-sensing compensator + Proportional pressure valve

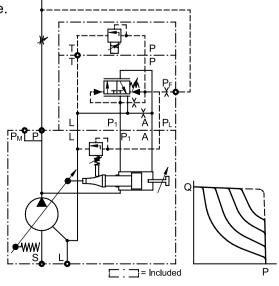
PS Horse power load-sensing compensator + Proportional pressure valve

The hydraulic-mechanical horse power compensator consists of a modified remote pressure compensator or of a modified load-sensing compensator and a pilot valve.

This pilot valve is integrated into the pump and is adjusted by a cam sleeve.

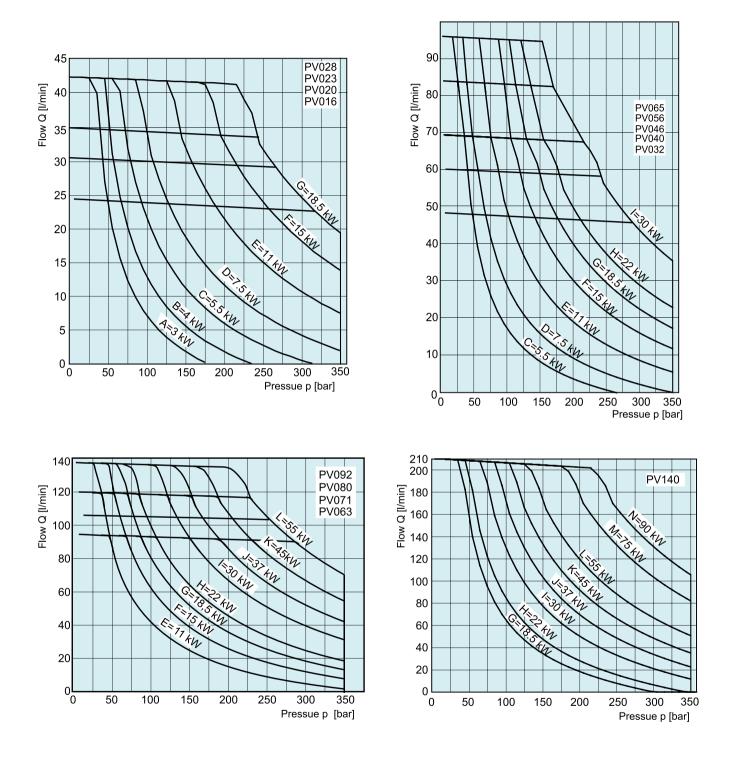
The cam sleeve has a contour that is designed and machined for the individual displacement and the nominal horse power setting.

At a large displacement the opening pressure (given by the cam sleeve diameter) is lower than at small displacements.

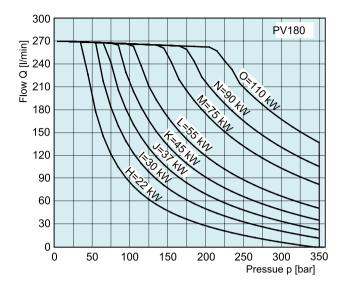

This makes the pump compensate along a constant horse power (torque) curve.

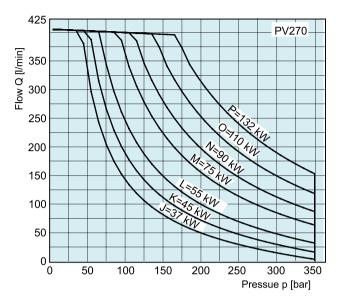
Electrical pressure-adjusted function is optional by adding a leading proportional pressure valve, and pump flow can also be adjusted on the first pipe by adding an external feedback on the PF port as a control signal on the main stream.

% Horse power setting, please following type code.


* Proportional pressure max.250 bar.

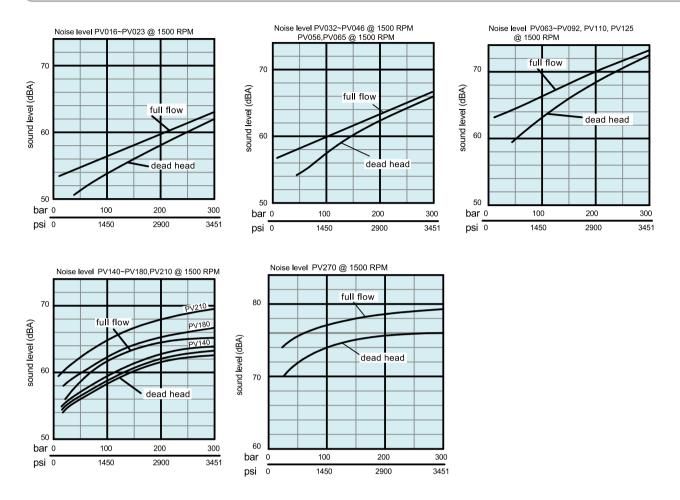
If needing any other pressure range, please contact YEOSHE.


Horse power compensator, diagrams



The diagrams are only valid for the following working conditions: speed: n=1500 (- - -) and 1800 (- - -) rev/min temperature: t=50°C fluid: mineral oil HLP, ISO VG46 viscosity: v=46 mm2/s at 40°C

Horse power compensator, diagrams



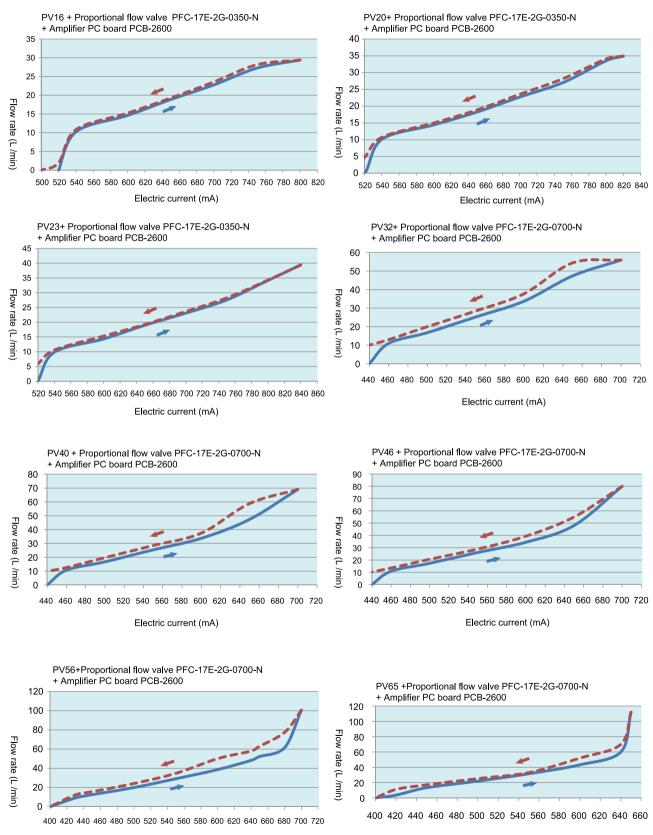
he diagrams are only valid for the following working conditions: speed: n=1500 (- - -) and 1800 (- - -) rev/min temperature: t=50°C fluid: mineral oil HLP, ISO VG46 viscosity: v=46 mm2/s at 40°C

WINMAN

PV Series

Nolse diagrams

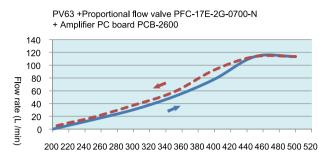
Test condition:


The noise of the single pump is according to the standard of DIN 45635, the rule of 1and26, at low echo measurement laboratory, measuring that the distance of microphone is 1m and 1500rpm.

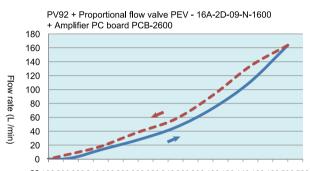
Notice:

At the best time to install, the volume noise of hydraulic equipment is always 6 ~ 10 dBA higher than measuring at low echo measurement laboratory.

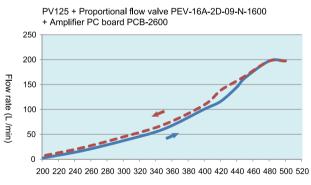
Proportional flow performance curves



Electric current (mA)


Electric current (mA)

Proportional flow performance curves



Electric current (mA)



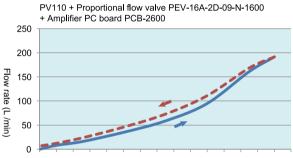
-20 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520

Electric current (mA)

Electric current (mA)

Amplifier PC board PCB-2600 160 140 120 Flow rate (L /min) 100 80 60

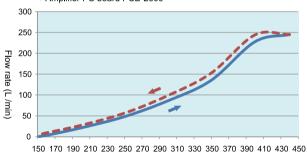
40


20

0

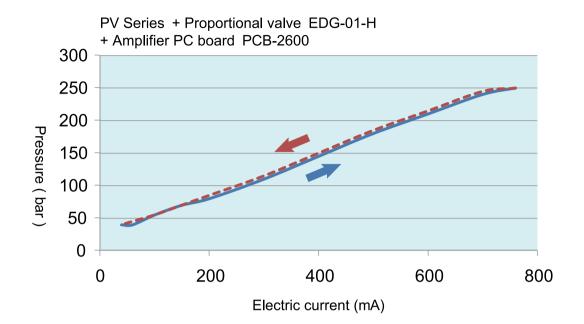
PV80 + Proportional flow valve PEV-16A-2D-09-N-1600

180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520



200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Electric current (mA)


PV140 + Proportional flow valve PEV-18A-2D-09-N-3200 + Amplifier PC board PCB-2600

Electric current (mA)

Proportional flow performance curves

A-47

PV Series

Proportional amplifier

Instructions for setting

Supply: green LED

RAMP: ramping up/down time adjustment. For long ramping times, turn potentiometers clockwise, for short ramping times, turn potentiometers counter-clockwise.

MAX/MIN:

I max / I min

There are multi-course potentiometers for adjustment of min-max and also ramp time.

Frequency ADJ.:

The dither frequency can be set with a jumper to 85, 140, or 300 Hz.

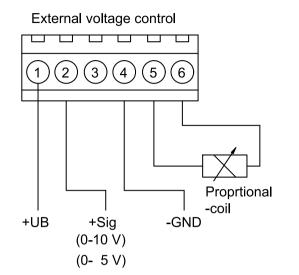
	Techincal data					
	Supply voltage: 10-35 VDC					
Max. current: 0-2600 mA adjustable for 12 and 24 VDC (Output is a PWM-DC)						
Min. current: 0-600 mA adjustable Ramp adjustment: 0~5 Sec.						

Dither frequency: 85, 140, 300 Hz to be set by jumper(Standard 140 Hz)

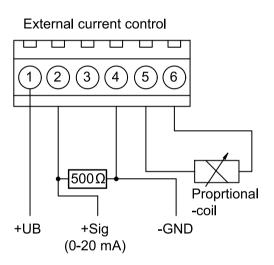
Ambient operating temperature: -15~140°F -10~60°C

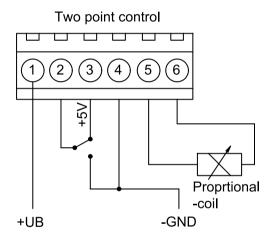
Weight: 0.05kg

NOTICE


Do not remove the amplifier from the coil while the power is on.

This will cause a failure in the internal circuits of the amplifier, resulting in loss of output to the coil.


WINMAN


PV Series

Proportional amplifier

Potentiometer control 2 3 (5)4 6 1 ŝ Proprtional 5...10kΩ -coil +UB -UB

. Clamp connections plug in connector Pin 1 =+ UB; supply voltage (10-35 VDC)

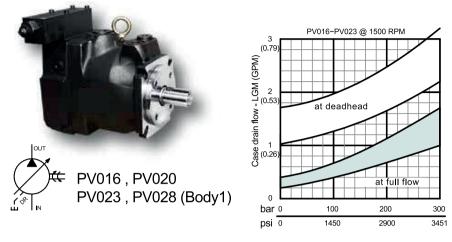
- Pin 2 = Control voltage (+ Sig)
- Pin 3 = Auxiliary voltage (+ 5 VDC)
- Pin 4 = Ground (GND)
- Pin 5 = Solenoid (-)

Pin 6 = Solenoid (+)

. Potentiometer

Turn clockwise means increasing current or Extension of ramp time App. 10 turns for complete range

.Fuse Standard 20 mm Glass fuse 2.5 A T

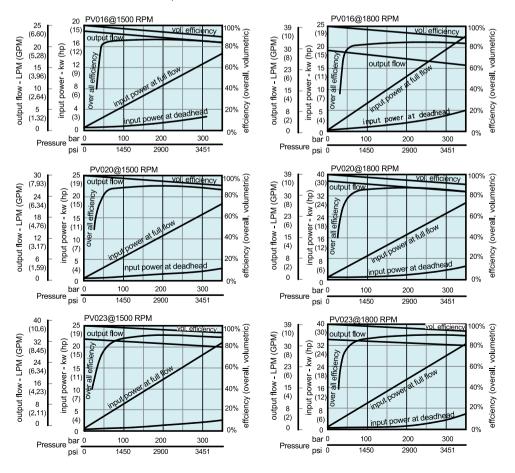

.LED's

LED +VS (green) = lights, when voltage supply and fuse are in order

LED1 (red) = lights, if there is an output to the solenoid

Efficiency and case drain flows

The efficiency and power graphs are measured at an input speed of n = 1500 RPM, a temperature of 40° C and a fluid viscosity of 46 mm2/s.

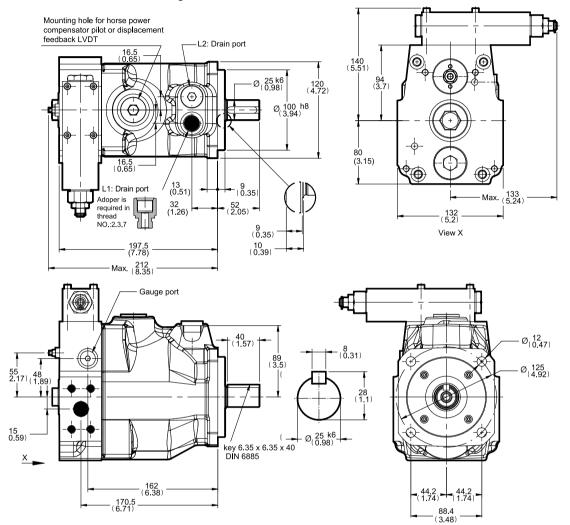

Case drain flow and compensator control flow leave via the drain port of the pump.

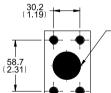
To the values shown are to be added 1 to 1.2 l/min , if at pilot operated compensators (codes G*, H*, P*, horse power compensator and p/Q-control) the control flow of the pressure pilot valve also goes through the pump.

Please note: The values shown below are only valid for static operation.

Under dynamic conditions and at rapid compensation of the pump the volume displaced by the servo piston also leaves the case drain port.

This dynamic control flow can reach up to 40 l/min! Therefore the case drain line is to lead to the reservoir at full size and without restrictions as short and direct as possible.




PV Series

Dimensions

PV016 ~ PV023,PV028(Body 1)

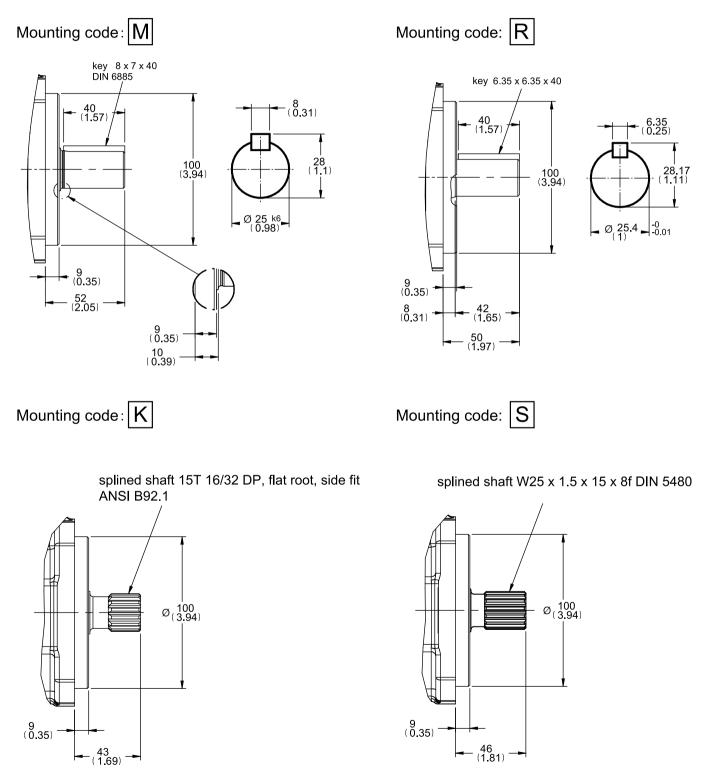
Metric version (Motor Mounting Ø101.6)

50 (2) Inlet : —flange according to ISO 6162 ISO 6162 DN 32 ; PN 250 bar

23.8 (0.94) 	Outlet :
		- flange according to ISO 6162
		ISO 6162 DN 19 ; PN 400 bar
		2
0.8		

FUILS				
Thread	1	2	3	7
	BSPP(G)	PT(RC)	UNF(SAE)	ISO 6149(M)
Inlet	Ø32	Ø32	Ø32	Ø32
	M10*P1.5	M10*P1.5	7/16"-14 UNC	M10*P1.5
	18 deep	18 deep	18 deep	18 deep
Outlet	Ø19	Ø19	Ø19	Ø19
	M10*P1.5	M10*P1.5	7/16"-14 UNC	M10*P1.5
	18 deep	18 deep	18 deep	18 deep
Drain port	G 1/2"-14	PT 1/2"-14	7/8"-14 UNF	M22*P1.5
(L1/ L2)	G 1/2 -14	FT 1/2 -14	778 - 14 UNI	WIZZ F 1.J
Gauge port	G 1/4"-19	PT 1/4"-19	7/16"-20 UNF	M12*P1.5

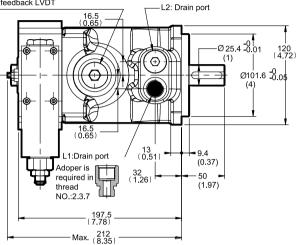
Threads code: 3 & 7 are not standard, not it stock, specially fabricate. Adoper is required in thread NO.:2.3.7 (Drain port)

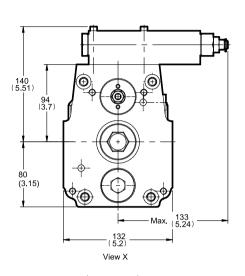

₽

Dimensions

PV016 ~ PV023, PV028(Body 1)

Metric version (Motor Mounting Ø100) Shaft type

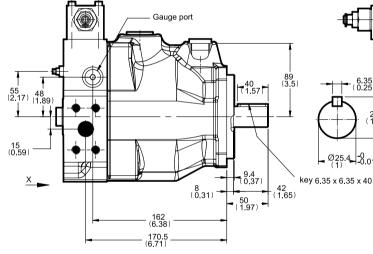

PV Series

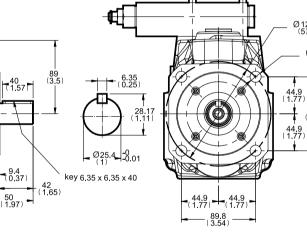

Dimensions

PV016 ~ PV023, PV028(Body 1)

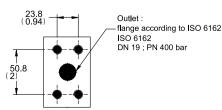
SAE version(motor mounting Ø101.6)

Mounting hole for horse power compensator pilot or displacement feedback LVDT





Ø 127 (5)

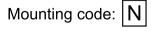

44.9 (1.77) 89.8 (3.54)

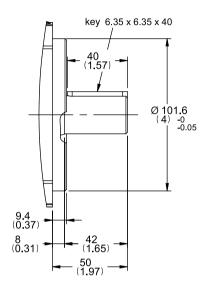
Ø12 (0.47)

30.2 (1.19) Inlet: -flange according to ISO 6162 DN 32 ; PN 250 bar 58.7 (2.31)

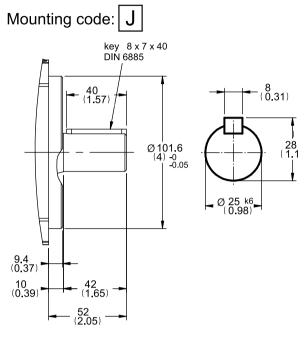
3 UNF(SAE)	1 BSPP(G)	2 PT(RC)	7 ISO 6149(M)
Ø32 7/16"-14 UNC	Ø32 M10*P1.5 18 deep	Ø32 M10*P1.5 18 deep	Ø32 M10*P1.5 18 deep
Ø19 7/16"-14 UNC	Ø19 M10*P1.5 18 deep	Ø19 M10*P1.5 18 deep	Ø19 M10*P1.5 18 deep
7/8"-14 UNF	G 1/2"-14	PT 1/2"-14	M22*P1.5
7/16"-20 UNF	G 1/4"-19	PT 1/4"-19	M12*P1.5
	UNF(SAE) Ø32 7/16"-14 UNC Ø19 7/16"-14 UNC 7/8"-14 UNF 7/16"-20	UNF(SAE) BSPP(G) Ø32 Ø32 7/16"-14 M10"P1.5 UNC 18 deep Ø19 Ø19 7/16"-14 M10"P1.5 UNC 18 deep 7/16"-14 M10"P1.5 UNC 18 deep 7/8"-14 UNF G 1/2"-14 7/16"-20 G 1/4"-19 G	UNF(SAE) BSPP(G) PT(RC) Ø32 Ø32 Ø32 7/16"-14 M10*P1.5 M10*P1.5 UNC 18 deep 18 deep Ø19 Ø19 Ø19 7/16"-14 M10*P1.5 M10*P1.5 UNC 18 deep 18 deep 7/16"-14 M10*P1.5 M10*P1.5 UNC 18 deep 18 deep 7/8"-14 UNF G 1/2"-14 PT 1/2"-14 7/16"-20 G 1/4"-19 PT 1/4"-19

Threads code: 3 & 7 are not standard, not it stock, specially fabricate. Adoper is required in thread NO.:2.3.7 (Drain port)

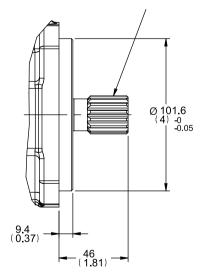

ĺ⊃ I⊕

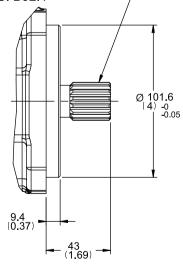



Dimensions


PV016 ~ PV023, PV028 (Body 1)

SAE version (motor mounting Ø101.6) Shaft type

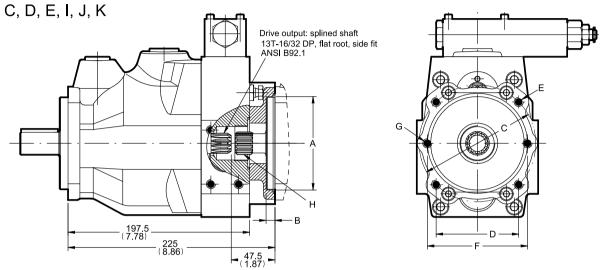



Mounting code: D

splined shaft W25 x 1.5 x 15 x 8f DIN 5480

Mounting code: U

splined shaft 15T 16/32 DP, flat root, side fit ANSI B92.1

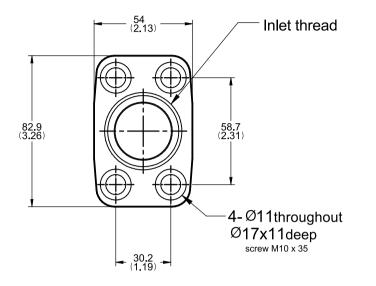


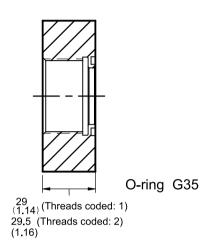
Dimensions

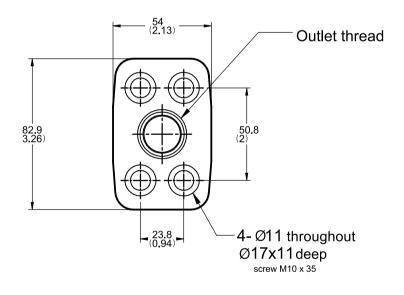
PV016 ~ PV023,PV028(Body 1) Thru drive

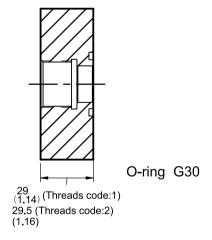
Thru drive:

Thru shaft adaptors are available with the following dimensions								
thru code	А	В	С	D	E	F	G	
I	63	10	85	-	M8	100	M8	
J	80	10	103	-	M8	109	M10	
K	100	10.5	125	-	M10	n. avail.	n. avail.	
С	50.8	10	-	-	-	82	M8	
D	82.55	10	-	-	-	106	M10	
E	101.6	10.5	-	89.8	M10	n. avail.	n. avail.	

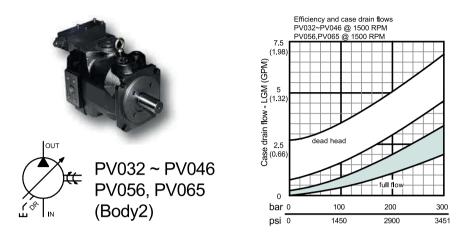

Thread codes are 3 and 7, the dimensions E and G are UNC-2B threads threads code: 3 and 7 Not standard, not in stock, require special requests.


 \ominus


PV016 - PV023, PV028 (Body 1) Inlet/Outlet Flange


Inlet Flange

Outlet Flange

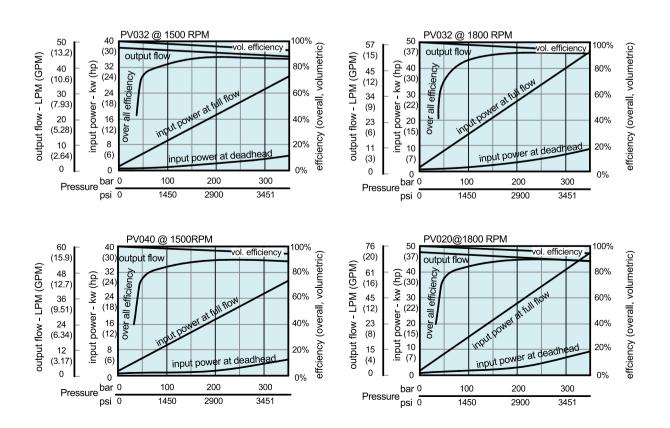


Ports				
Thread code	3 UNF(SAE)	1 BSPP(G)	2 PT(RC)	7 ISO 6149(M)
Inlet	1 5/8"-12 UN	G 1 1/4"-11	PT 1 1/4"-11	M42*P2.0
Outlet	1 1/16"-12 UN	G 3/4"-14	PT3/4"-14	M27*P2.0

Threads code: 3 & 7 are not standard, not it stock, specially fabricate.

Efficiency and case drain flows

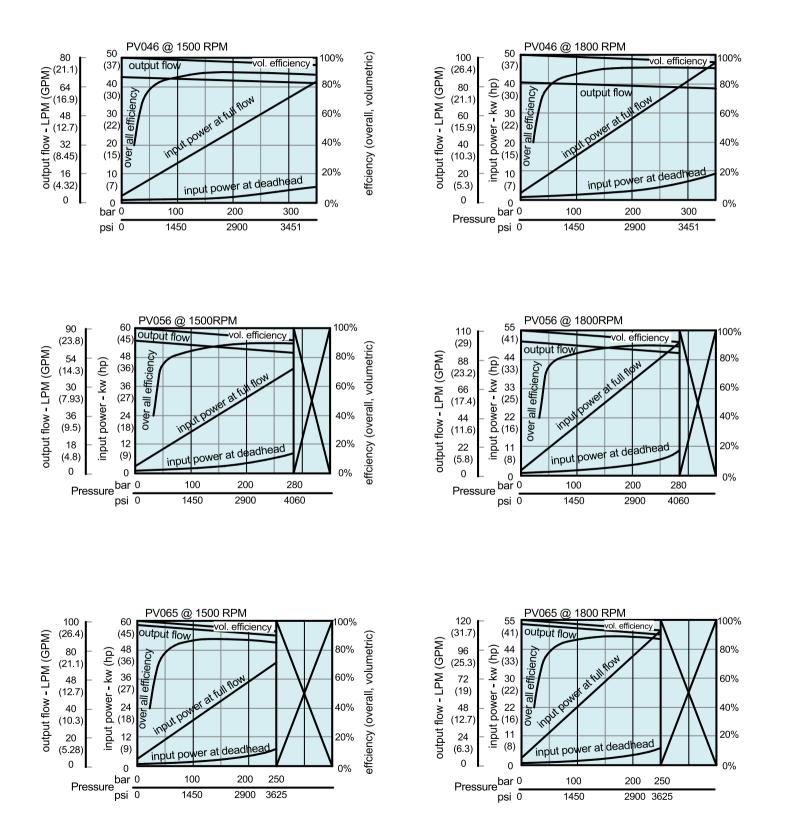
The efficiency and power graphs are measured at an input speed of n = 1500 RPM, a temperature of 40°C and a fluid viscosity of 46 mm2/s.


Case drain flow and compensator control flow leave via the drain port of the pump.

To the values shown are to be added 1 to 1.2 l/min , if at pilot operated compensators (codes G*, H*, P*, horse power compensator and p/Q-control) the control flow of the pressure pilot valve also goes through the pump.

Please note: The values shown below are only valid for static operation.

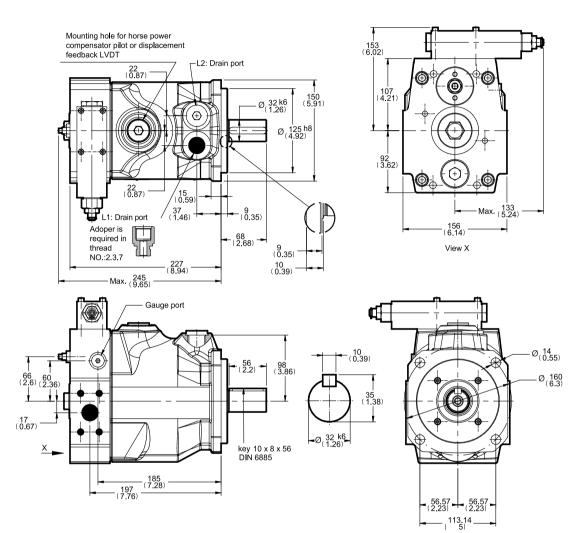
Under dynamic conditions and at rapid compensation of the pump the volume displaced by the servo piston also leaves the case drain port.

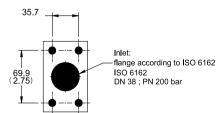

This dynamic control flow can reach up to 60 l/min! Therefore the case drain line is to lead to the reservoir at full size and without restrictions as short and direct as possible.

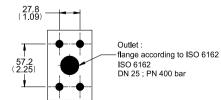
PV Series

Efficiency and case drain flows

PV032 ~ PV046, PV056, PV065 (Body2)




PV Series

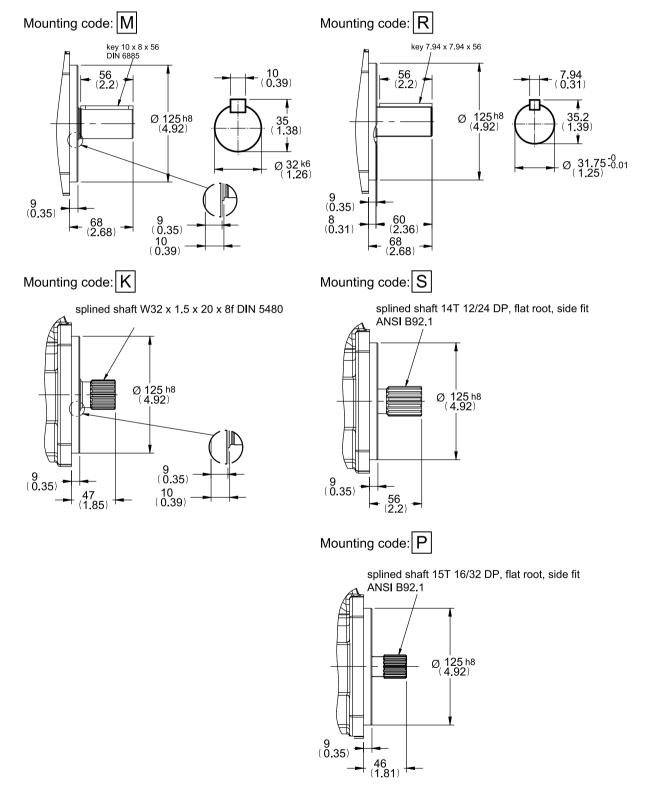

Dimension

PV032 ~ PV046, PV056, PV065 (Body 2)

Metric version (motor mounting Ø125)

Ports					
Thread	3	1	2	7	
	UNF(SAE)	BSPP(G)	PT(RC)	ISO 6149(M)	
Inlet	Ø38 1/2"-13 UNC 18 deep	Ø38 M12*P1.75 18 deep	Ø38 M12*P1.75 18 deep	Ø38 M12*P1.75 18 deep	
Outlet	Ø25 1/2"-13 UNC 18 deep	Ø25 M12*P1.75 18 deep	Ø25 M12*P1.75 18 deep	Ø25 M12*P1.75 18 deep	
Drain port (L1/ L2)	1 1/16"-12 UNF	G 3/4"-14	PT 3/4"-14	M27*P2.0	
Gauge port	7/16"-20 UNF	G 1/4"-19	PT 1/4"-19	M12*P1.5	

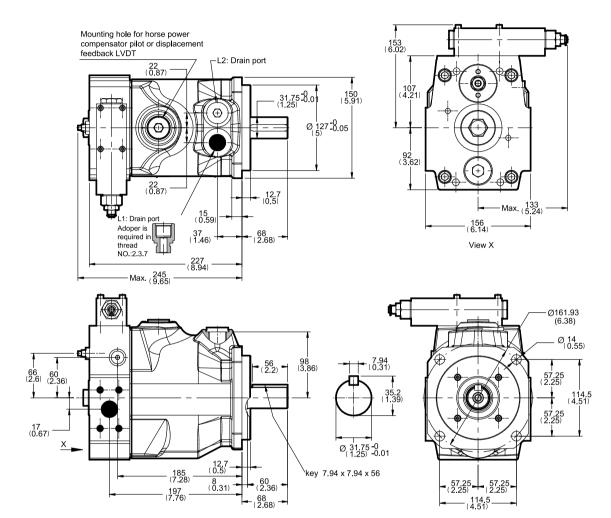
Threads code: 3 & 7 are not standard, not it stock, specially fabricate. Adoper is required in thread NO.: 2.3.7 (Drain port)

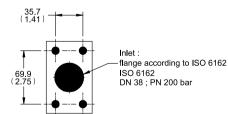

-⊖- ()

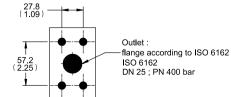
Dimension

PV032 ~ PV046, PV056, PV065 (Body 2)

Metric version (motor mounting Ø125) Shaft type


A-60



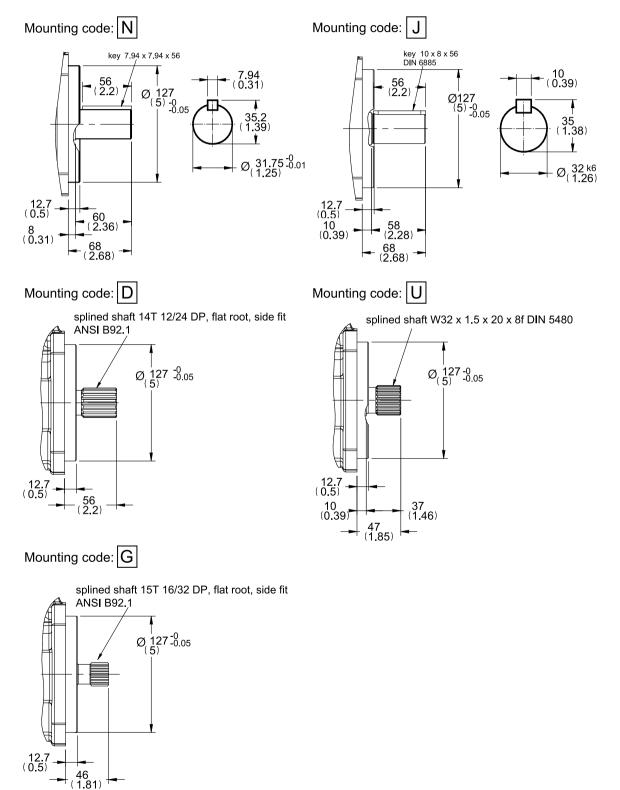

Dimension

PV032 ~ PV046, PV056, PV065 (Body 2)

SAE version (motor mounting Ø127)

Ports						
Thread	3	1	2	7		
	UNF(SAE)	BSPP(G)	PT(RC)	ISO 6149(M)		
Inlet	Ø 38	Ø38	Ø38	Ø38		
	1/2"-13 UNC	M12*P1.75	M12*P1.75	M12*P1.75		
	18 deep	18 deep	18 deep	18 deep		
Outlet	Ø25	Ø25	Ø25	Ø25		
	1/2"-13 UNC	M12*P1.75	M12*P1.75	M12*P1.75		
	18 deep	18 deep	18 deep	18 deep		
Drain port (L1/ L2)	1 1/16"-12 UNF	G 3/4"-14	PT 3/4"-14	M27*P2.0		
Gauge port	7/16"-20 UNF	G 1/4"-19	PT 1/4"-19	M12*P1.5		

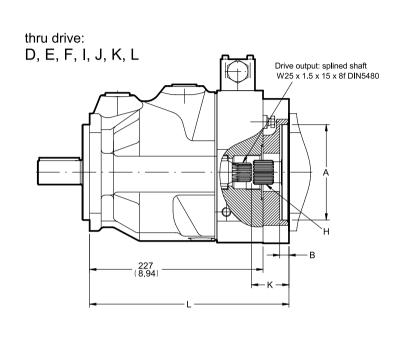
Threads code: 3 & 7 are not standard, not it stock, specially fabricate. Adoper is required in thread NO.: 2.3.7 (Drain port)

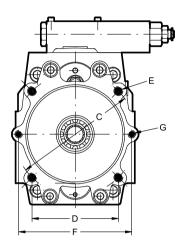

WINMAN

PV Series

Dimension

PV032 ~ PV046, PV056, PV065 (Body 2) SAE version (motor mounting Ø127)


Shaft type

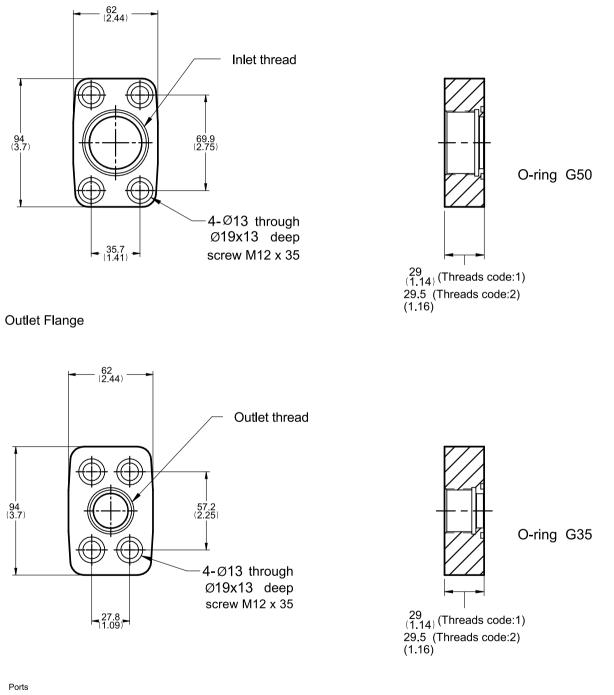


Dimension

PV032 ~ PV046, PV056, PV065 (Body 2) Thru drive

	Thru shaft adaptors are available with the following dimensions:								
thru code	А	В	С	D	E	F	G	К	L
I	63	8.5	85	-	M8	100	M8	49	261
J	80	8.5	103	-	M8	109	M10	49	261
К	100	10.5	125	-	M10	140	M12	49	261
L	125	12	160	-	M12	n. avail.	n. avail.	49	261
D	82.55	8	-	-	-	106	M10	49	261
E	101.6	11	-	89.8	M10	146	M12	49	261
F	127	13.5	-	114.5	M12	n. avail.	n. avail.	64	276

Thread codes are 3 and 7 the dimensions E and G are UNC-2B threads

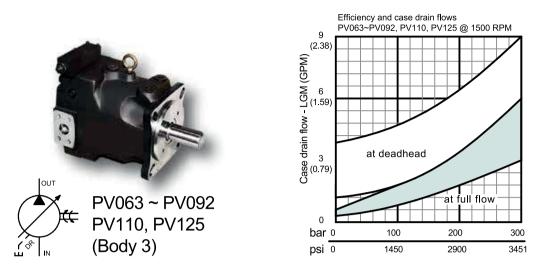

threads code: 3 and 7 Not standard, not in stock require special requests

PV Series

Dimension

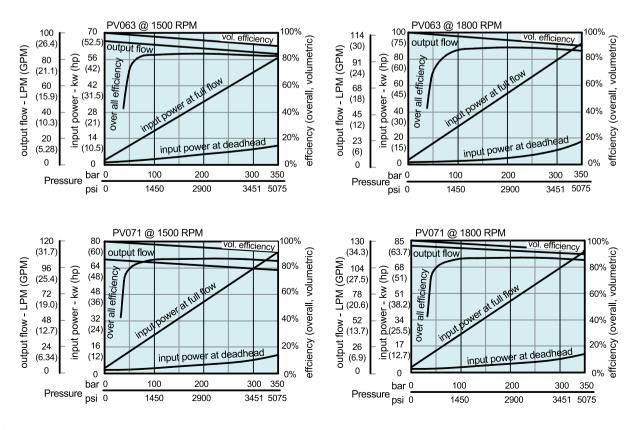
PV032 ~ PV046, PV056, PV065 (Body 2) Inlet / Outlet Flange

Inlet Flange



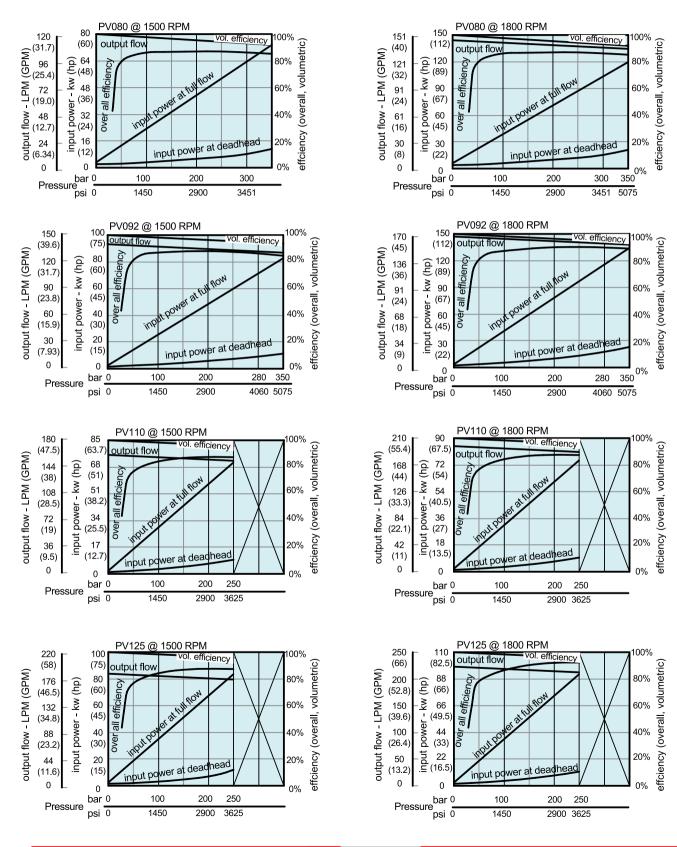
Thread code	3 UNF(SAE)	1 BSPP(G)	2 PT(RC)	7 ISO 6149(M)
Inlet	1 7/8"-12 UN	G 1 1/2"-11	PT 1 1/2"-11	M48*P2.0
Outlet	1 5/16"-12 UN	G 1"-11	PT 1"-11	M33*P2.0

threads code: 3 & 7 are not standard, not it stock, specially fabricate.


Efficiency and case drain flows

The efficiency and power graphs are measured at an input speed of n = 1500 RPM, a temperature of 40°C and a fluid viscosity of 46 mm2/s.

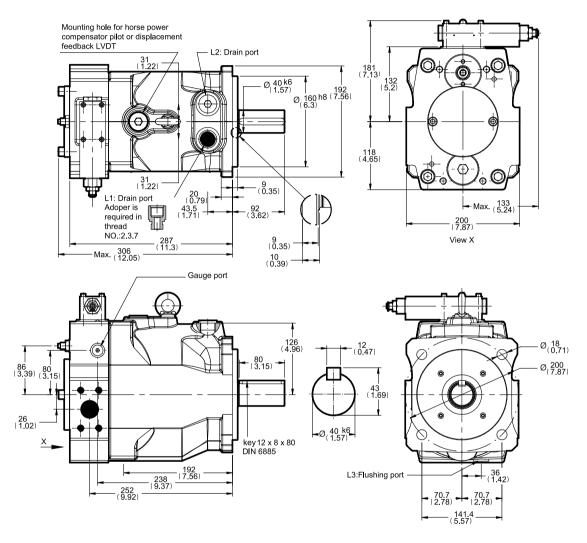
Case drain flow and compensator control flow leave via the drain port of the pump. To the values shown are to be added 1 to 1.2 I/min , if at pilot operated compensators (codes G*, H*, P*, horse power compensator and p/Q-control) the control flow of the pressure pilot valve also goes through the pump.

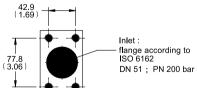

Please note: The values shown below are only valid for static operation. Under dynamic conditions and at rapid compensation of the pump the volume displaced by the servo piston also leaves the case drain port. This dynamic control flow can reach up to 80 l/min! Therefore the case drain line is to lead to the reservoir at full size and without restrictions as short and direct as possible.

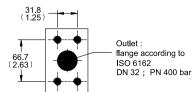
PV Series

Efficiency and case drain flows

PV063 ~ PV092, PV110, PV125 (Body 3)




PV Series

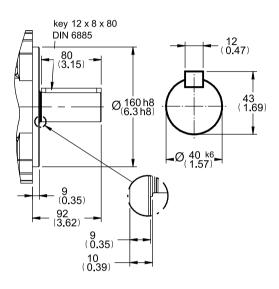

Dimension

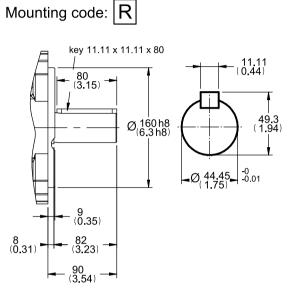
PV063 ~ PV092, PV110, PV125 (Body 3)

Metric version (motor mountingØ160)

Ports				
Thread	3	1	2	7
	UNF(SAE)	BSPP(G)	PT(RC)	ISO 6149(M)
Inlet	Ø47	Ø47	Ø47	Ø47
	1/2"-13 UNC	M12*P1.75	M12*P1.75	M12*P1.75
	20 deep	20 deep	20 deep	20 deep
Outlet	Ø32	Ø32	Ø32	Ø32
	1/2"-13 UNC	M12*P1.75	M12*P1.75	M12*P1.75
	20 deep	20 deep	20 deep	20 deep
Drain port	1 1/16"-12			
(L1/ L2)	UNF	G 3/4"-14	PT 3/4"-14	M27*P2.0
L3	7/8"-14 UNF	G 1/2"-14	PT 1/2"-14	M22*P1.5
Gauge port	7/16"-20 UNF	G 1/4"-19	PT 1/4"-19	M12*P1.5

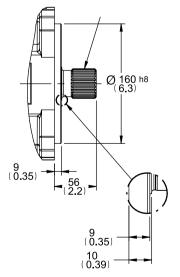
Threads code: 3 & 7 are not standard, not it stock, specially fabricate. Adoper is required in thread NO.:2.3.7 (Drain port)

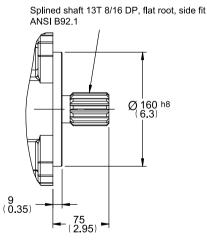



Dimension

PV063 ~ PV092, PV110, PV125 (Body3)

Metric version (motor mounting Ø160) Shaft type

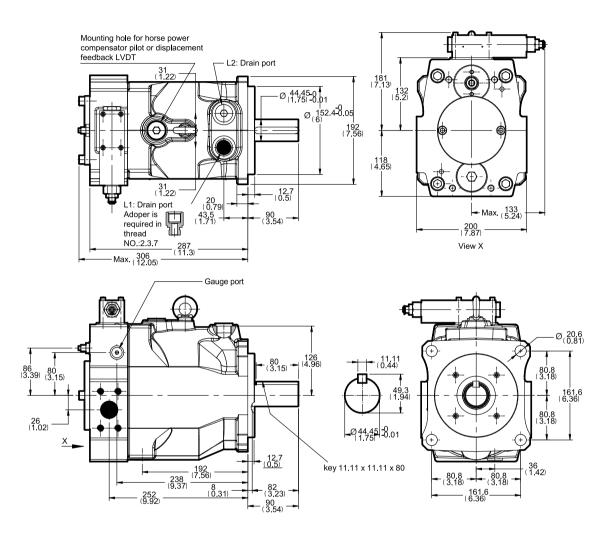


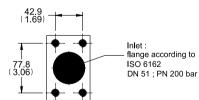


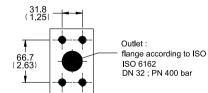
Mounting code: K

Splined shaft W40 x 1.5 x 25 x 8f DIN 5480

Mounting code: S




PV Series


Dimension

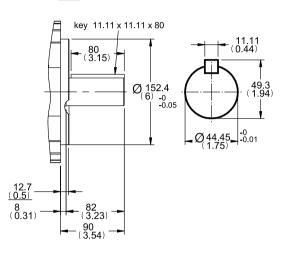
PV063 ~ PV092, PV110, PV125 (Body 3)

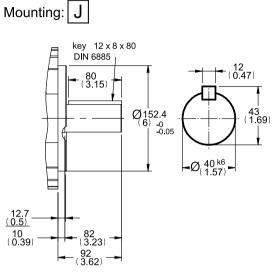
SAE version (motor mounting Ø152.4)

Ports				
Thread	3	1	2	7
	UNF(SAE)	BSPP(G)	PT(RC)	ISO 6149(M)
Inlet	Ø47	Ø47	Ø47	Ø47
	1/2"-13 UNC	M12*P1.75	M12*P1.75	M12*P1.75
	20 deep	20 deep	20 deep	20 deep
Outlet	Ø32	Ø32	Ø32	Ø32
	1/2"-13 UNC	M12*P1.75	M12*P1.75	M12*P1.75
	20 deep	20 deep	20 deep	20 deep
Drain port (L1/ L2)	1 1/16"-12 UNF	G 3/4"-14	PT 3/4"-14	M27*P2.0
L3	7/8"-14 UNF	G 1/2"-14	PT 1/2"-14	M22*P1.5
Gauge port	7/16"-20 UNF	G 1/4"-19	PT 1/4"-19	M12*P1.5

Threads code: 3 & 7 are not standard, not it stock, specially fabricate. Adoper is required in thread NO.:2.3.7 (Drain port)

() ()

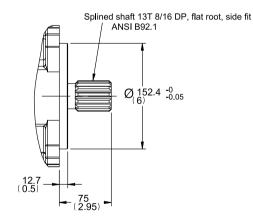


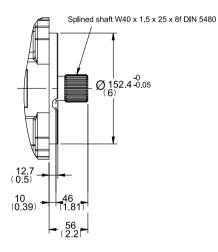

Dimension

PV063 ~ PV092, PV110, PV125 (Body 3)

SAE version (motor mounting Ø152.4) Shaft type

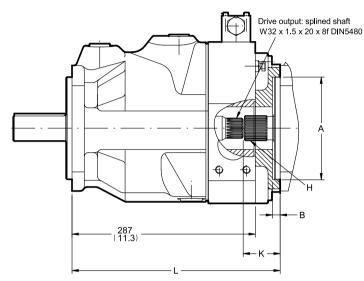
Mounting: N

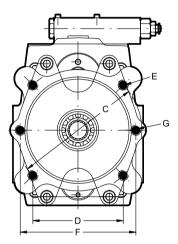




Mounting: D

Mounting:





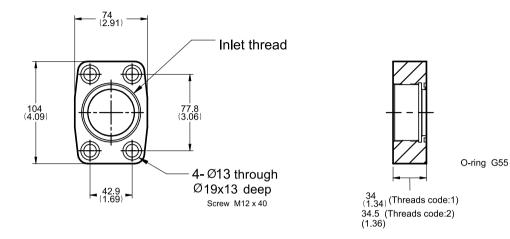
Dimension

PV063 ~ PV092, PV110, PV125 (Body 3) Thru drive

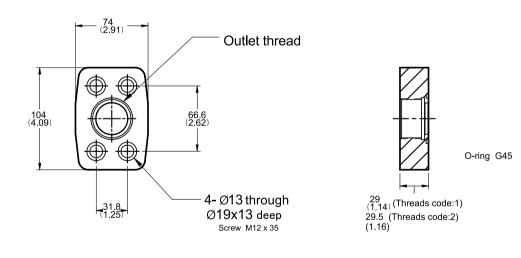
thru drive: D, E, F, G, I, J, K, L, M

Thru shaft adaptors are available with the following dimensions:										
Thru code	А	В	С	D	E	F	G	к	L	
I.	63	10	85	-	M8	100	M8	58	326	
J	80	10	103	-	M8	109	M10	58	326	
К	100	12	125	-	M10	140	M12	58	326	
L	125	12	160	-	M12	180	M16	58	326	
М	160	12	200	-	M16	n. avail.	n. avail.	58	326	
D	82.55	10	-	-	-	106	M10	58	326	
Е	101.6	12	-	89.8	M10	146	M12	58	326	
F	127	14	-	114.5	M12	181	M16	58	326	
G	152.4	14	-	161.6	M16	n. avail.	n. avail.	78	346	

Thread codes are 3 and 7 the dimensions E and G are UNC-2B threads


threads code: 3 and 7 Not standard, not in stock require special requests.

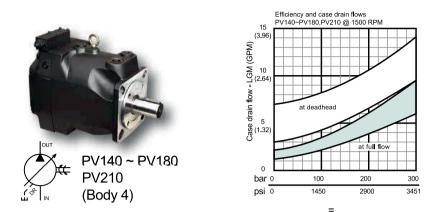
() ()


WINMAN PV Series Dimension

PV063 ~ PV092, PV110, PV125 (Body 3) Inlet / Outlet Flange

Inlet Flange

Outlet Flange

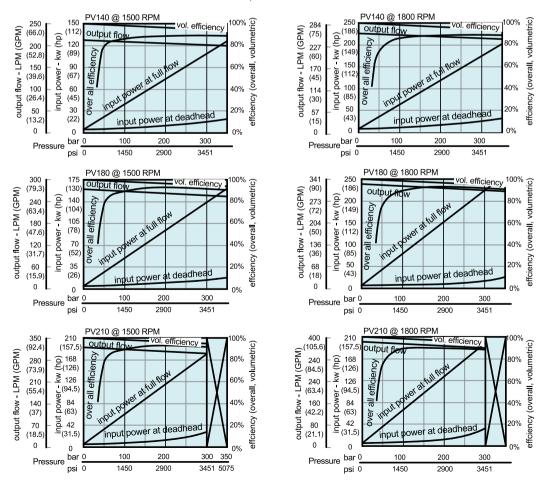


Ports					
Thread code	3	1	2	7	
	UNF(SAE)	BSPP(G)	PT(RC)	ISO 6149(M)	
Inlet	2 1/2"-12 UN	G 2"-11	PT 2"-11	M33*P2.0	
Outlet	1 5/8"-12 UN	G 1 1/4"-11	PT1 1/4"-11	M42*P2.0	

Threads code: 3 & 7 are not standard, not it stock, specially fabricate.

PV Series

Efficiency and case drain flows

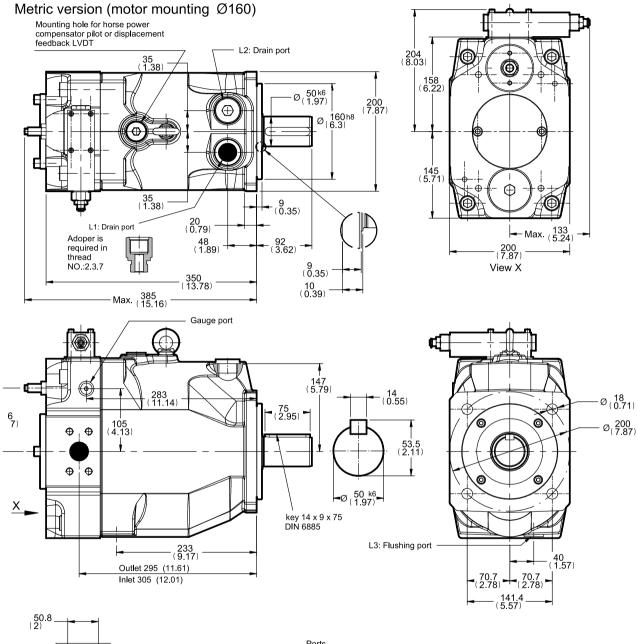

The efficiency and power graphs are measured at an input speed of n = 1500 RPM, a temperature of 40°C and a fluid viscosity of 46 mm2/s.

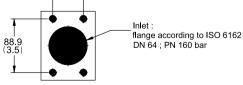
Case drain flow and compensator control flow leave via the drain port of the pump.

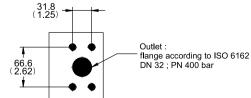
To the values shown are to be added 1 to 1.2 l/min , if at pilot operated compensators (codes G*, H*, P*, horse power compensator and p/Q*control) the control flow of the pressure pilot valve also goes through the pump. Please note: The values shown below are only valid for static operation.

Under dynamic conditions and at rapid compensation of the pump the volume displaced by the servo piston also leaves the case drain port.

This dynamic control flow can reach up to 40 l/min! Therefore the case drain line is to lead to the reservoir at ful size and without restrictions as short and direct as possible.




A-73

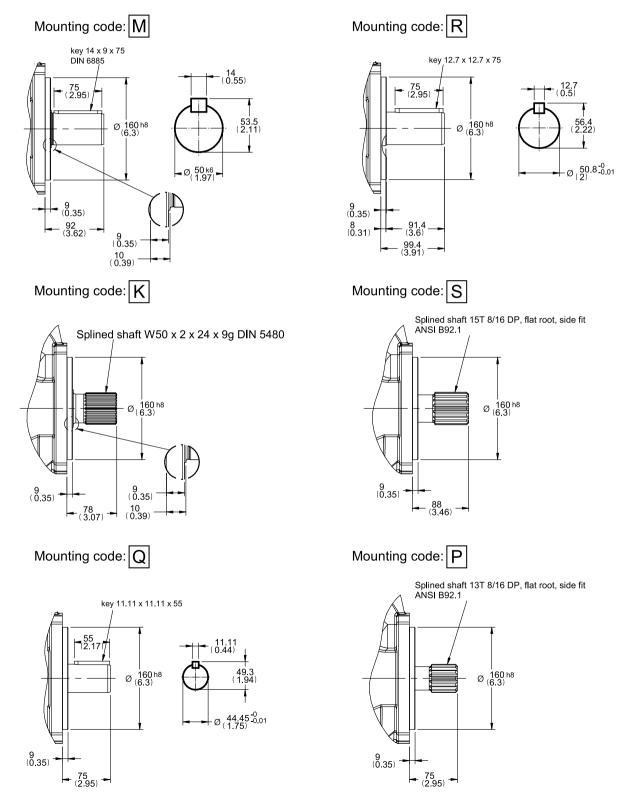

PV Series

Dimension

PV140 ~ PV180, PV210 (Body 4)

3	1	2	7
UNF(SAE)	BSPP(G)	PT(RC)	ISO 6149(M)
Ø64	Ø64	Ø64	Ø64
1/2"-13 UNC	M12*P1.75	M12*P1.75	M12*P1.75
20 deep	20 deep	20 deep	20 deep
Ø32	Ø32	Ø32	Ø32
1/2"-13 UNC	M12*P1.75	M12*P1.75	M12*P1.75
20 deep	20 deep	20 deep	20 deep
1 5/16"-12 UNF	G 1"-11	PT 1"-11	M33*P2.0
1 1/16"-12 UNF	G 3/4"-14	PT 3/4"-14	M27*P2.0
7/16"-20 UNF	G 1/4"-19	PT 1/4"-19	M12*P1.5
	UNF(SAE) Ø64 1/2"-13 UNC 20 deep Ø32 1/2"-13 UNC 20 deep 1 5/16"-12 UNF 1 1/16"-12 UNF 7/16"-20	UNF(SAE) BSPP(G) Ø64 Ø64 1/2"-13 UNC M12*P1.75 20 deep 20 deep Ø32 Ø32 1/2"-13 UNC M12*P1.75 20 deep 20 deep 1 5/16"-12 G 1"-11 UNF G 3/4"-14 7/16"-20 G 1/4"-19	UNF(SAE) BSPP(G) PT(RC) Ø64 Ø64 Ø64 1/2"-13 UNC M12"P1.75 20 deep Ø32 Ø32 Ø32 1/2"-13 UNC M12"P1.75 20 deep Ø32 Ø32 Ø32 1/2"-13 UNC M12"P1.75 M12"P1.75 20 deep 20 deep 20 deep 1 5/16"-12 G 1"-11 PT 1"-11 UNF G 3/4"-14 PT 3/4"-14 VNF G 1/4"-19 PT 1/4"-19

threads code: 3 & 7 are not standard, not it stock, specially fabricate. Adoper is required in thread NO.:2.3.7 (Drain port)

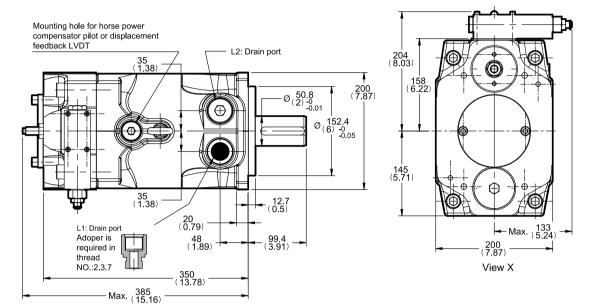


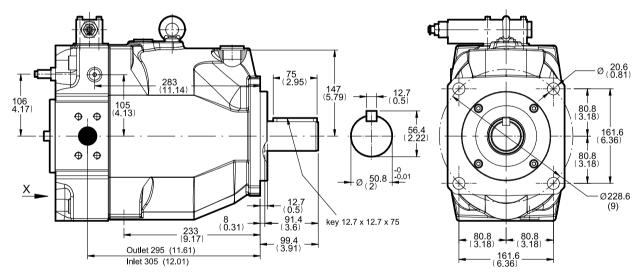
PV Series

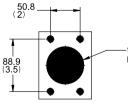
Dimension

PV140 ~ PV180, PV210 (Body 4)

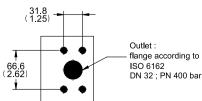
Metric version (motor mounting Ø160) Shaft type


A-75




Dimension

PV140 ~ PV180, PV210 (Body 4)

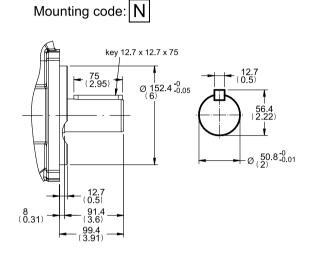

SAE version (motor mounting Ø152.4)

Inlet : —flange according to ISO 6162 DN 64 ; PN 160 bar

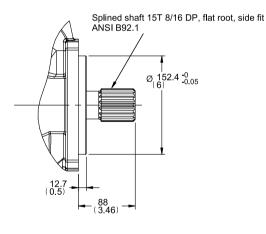
	_
	Р

Ports				
Thread	1	2	3	7
	BSPP(G)	PT(RC)	UNF(SAE)	ISO 6149(M)
Inlet	Ø64	Ø64	Ø64	Ø64
	M12*P1.75	M12*P1.75	1/2"-13 UNC	M12*P1.75
	20 deep	20 deep	20 deep	20 deep
Outlet	Ø32	Ø32	Ø32	Ø32
	M12*P1.75	M12*P1.75	1/2"-13 UNC	M12*P1.75
	20 deep	20 deep	20 deep	20 deep
Drain port (L1/ L2)	G 1"-11	PT 1"-11	1 5/16"-12 UNF	M33*P2.0
L3	G 3/4"-14	PT 3/4"-14	1 1/16"-12 UNF	M27*P2.0
Gauge port	G 1/4"-19	PT 1/4"-19	7/16"-20 UNF	M12*P1.5

threads code: 3 & 7 are not standard, not it stock, specially fabricate. Adoper is required in thread NO.:2.3.7 (Drain port)

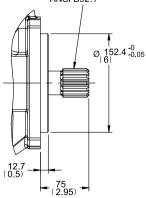


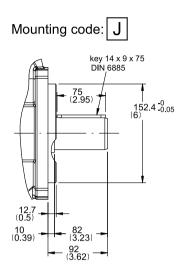
PV Series

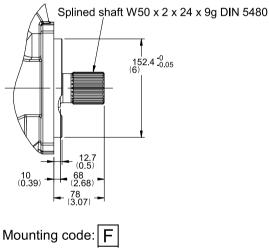

Dimension

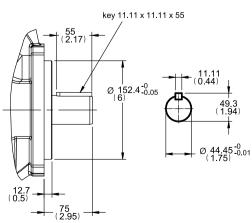
PV140 ~ PV180, PV210 (Body 4) SAE version(motor mounting Ø152.4)

Shaft type



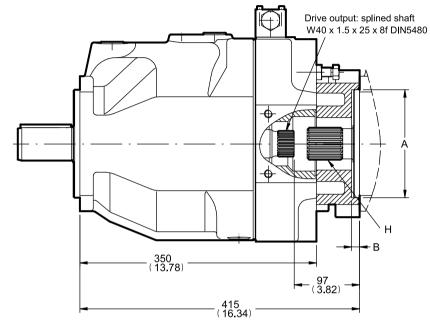

Mounting code: D

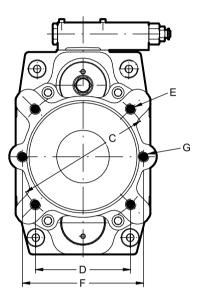

Mounting code: G


Splined shaft 13T 8/16 DP, flat root, side fit ANSI B92.1

Mounting code:

A-77


Dimension


PV140 ~ PV180, PV210 (Body 4)

Thru drive

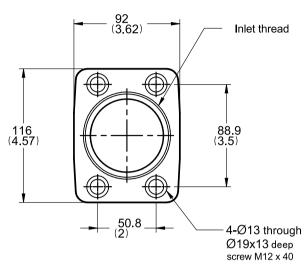
Thru drive:

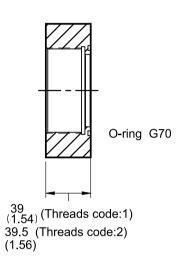
D, E, F, G, J, K, L, M

	Thru shaft adaptors are available with the following dimensions:							
thru code	А	В	С	D	Е	F	G	
J	80	10	103	-	M8	109	M10	
K	100	12	125	-	M10	140	M12	
L	125	12	160	-	M12	180	M16	
М	160	12	200	-	M16	n. avail.	n. avail.	
D	82.55	10	-	-	-	106	M10	
E	101.6	12	-	89.8	M10	146	M12	
F	127	14	-	114.5	M12	181	M16	
G	152.4	14	-	161.6	M16	n. avail.	n. avail.	

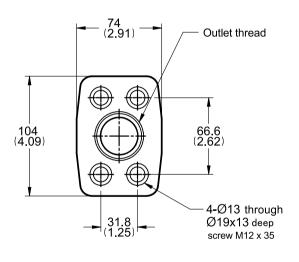
Thread codes are 3 and 7 the dimensions E and G are UNC-2B threads threads code: 3 and 7 Not standard, not in stock require special requests.

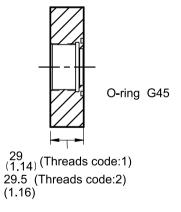
-⊖- ®



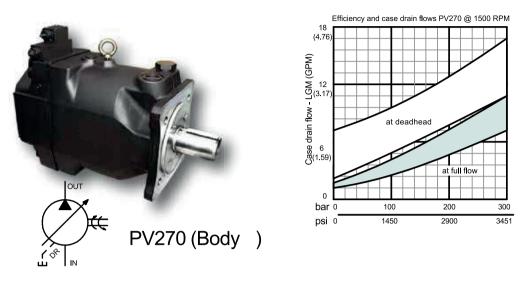

PV Series

Dimension


PV140 ~ PV180, PV210 (Body 4) Inlet / Outlet Flange


Inlet Flange

Outlet Flange


Ports

1 0/10				
Thread code	3	1	2	7
	UNF(SAE)	BSPP(G)	PT(RC)	ISO 6149(M)
Inlet	Welding	G 2 1/2"-11	PT 2 1/2"-11	Welding
Outlet	1 5/8"-12 UN	G 1 1/4"-11	PT 1 1/4"-11	M42*P2.0

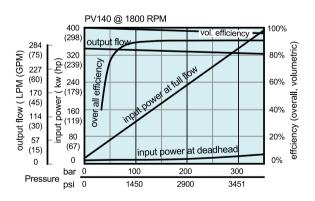
threads code: 3 & 7 are not standard, not it stock, specially fabricate.

Efficiency and case drain flows

The efficiency and power graphs are measured at an input speed of n = 1500 RPM, a temperature of 40°C and a fluid viscosity of 46 mm2/s.

Case drain flow and compensator control flow leave via the drain port of the pump.

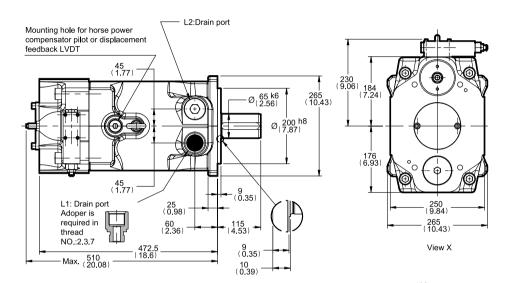
To the values shown are to be added 1 to 1.2 l/min, if at pilot operated compensators (codes G*, H*, P*, horse power compensator and p/Q(control) the control flow of the pressure pilot valve also goes through the pump.

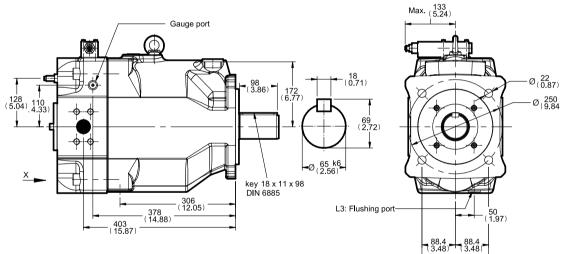

Please note: The values shown below are only valid for static operation.

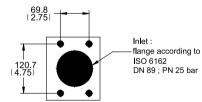
Under dynamic conditions and at rapid compensation of the pump the volume displaced by the servo piston also leaves the case drain port.

This dynamic control flow can reach up to 120 I/min!

Therefore the case drain line is to lead to the reservoir at full size and without restrictions as short and direct as possible.




PV Series


Dimension

PV270 (Body5)

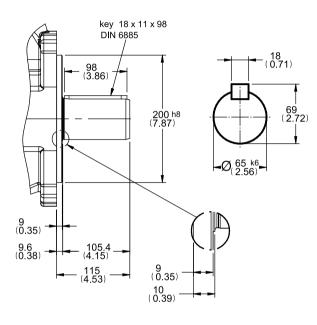
Metric version (motor mounting Ø200)

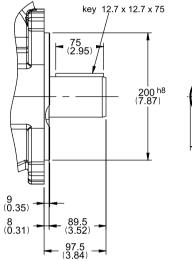
Ports				
Thread	3	1	2	7
	UNF(SAE)	BSPP(G)	PT(RC)	ISO 6149(M)
Inlet	Ø88	Ø88	Ø88	Ø88
	5/8"-11 UNC	M16*P2.0	M16*P2.0	M16*P2.0
	32 deep	32 deep	32 deep	32 deep
Outlet	Ø38	Ø38	Ø38	Ø38
	5/8"-11 UNC	M16*P2.0	M16*P2.0	M16*P2.0
	32 deep	32 deep	32 deep	32 deep
Drain port	1 5/8"-12 UNF	G 1 1/4"-11	PT 1 1/4"-11	M42*P2.0
(L1/ L2)	1 5/6 -12 UNF	G T 1/4 -11	PT 1 1/4 -11	IVI42 P2.0
L3	1 1/16"-12 UNF	G 3/4"-14	PT 3/4"-14	M27*P2.0
Gauge port	7/16"-20 UNF	G 1/4"-19	PT 1/4"-19	M12*P1.5

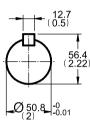
_ 176.8 (6.96)

threads code: 3 & 7 are not standard, not it stock, specially fabricate. Adoper is required in thread NO.:2.3.7 (Drain port)

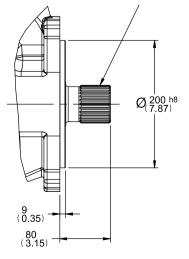
Dimension

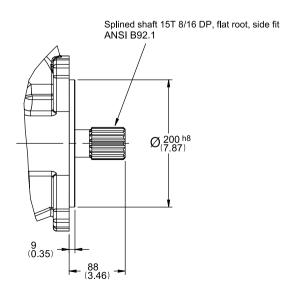

PV270 (Body 5)


Metric version (motor mounting Ø200) Shaft type


Mounting code: M

Mounting code: R

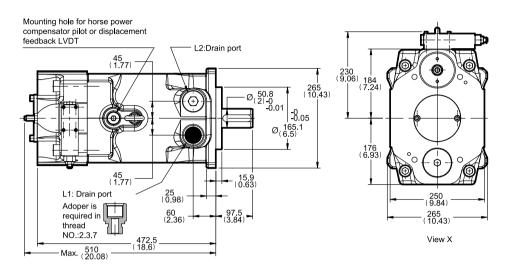


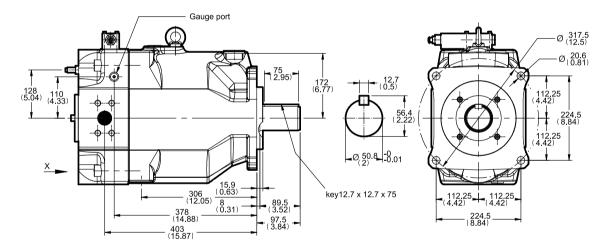


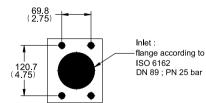
Mounting code: K

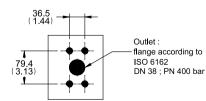
Splined shaft W60 x 2 x 28 x 9g DIN 5480

Mounting code: S





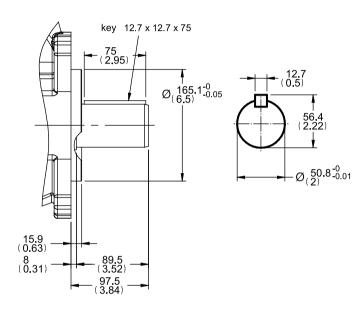

Dimension


PV270 (Body 5)

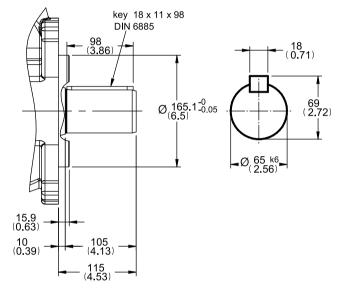
SAE version (motor mounting Ø165.1)

	1	2	7
JNF(SAE)	BSPP(G)	PT(RC)	ISO 6149(M)
88	Ø88	Ø88	Ø88
/8"-11 UNC	M16*P2.0	M16*P2.0	M16*P2.0
2 deep	32 deep	32 deep	32 deep
38	Ø38	Ø38	Ø38
/8"-11 UNC	M16*P2.0	M16*P2.0	M16*P2.0
2 deep	32 deep	32 deep	32 deep
5/9" 12 LINE	C 1 1/4" 11	DT 1 1/4" 11	M42*P2.0
5/0 -12 UNF	G 1 1/4 -11	FIII/4-II	WI42 F2.0
1/16"-12 UNF	G 3/4"-14	PT 3/4"-14	M27*P2.0
/16"-20 UNF	G 1/4"-19	PT 1/4"-19	M12*P1.5
	88 /8"-11 UNC 2 deep 38 /8"-11 UNC 2 deep 5/8"-12 UNF 1/16"-12 UNF	NF(SAE) BSPP(G) 88 Ø88 /8"-11 UNC M16*P2.0 2 deep 32 deep 38 Ø38 /8"-11 UNC M16*P2.0 2 deep 32 deep 38 Ø38 /8"-11 UNC M16*P2.0 2 deep 32 deep 5/8"-12 UNF G 1 1/4"-11 1/16"-12 UNF G 3/4"-14	NF(SAE) BSPP(G) PT(RC) 88 Ø88 Ø88 /8"-11 UNC M16*P2.0 M16*P2.0 2 deep 32 deep 32 deep 38 Ø38 Ø38 /8"-11 UNC M16*P2.0 M16*P2.0 2 deep 32 deep 32 deep 38 Ø38 Ø38 /8"-11 UNC M16*P2.0 2 deep 2 deep 32 deep 32 deep 5/8"-12 UNF G 1 1/4"-11 PT 1 1/4"-11 1/16"-12 UNF G 3/4"-14 PT 3/4"-14

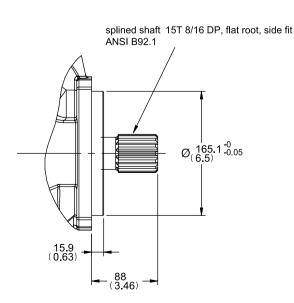
Threads code: 3 & 7 are not standard, not it stock, specially fabricate. Adoper is required in thread NO.:2.3.7 (Drain port)

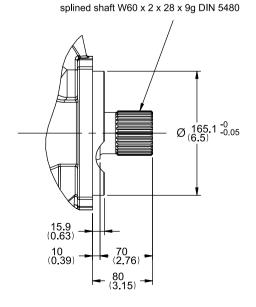


Dimension


PV270 (Body 5)

SAE version(motor mounting Ø165.1) Shafe type

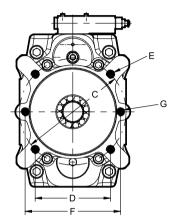

Mounting code: N


Mounting code: J

Mounting code: D

Mounting code: U

A-84


PV Series

Dimension

PV270 (Body 5) Thru drive

thru drive:

97 (3.82)

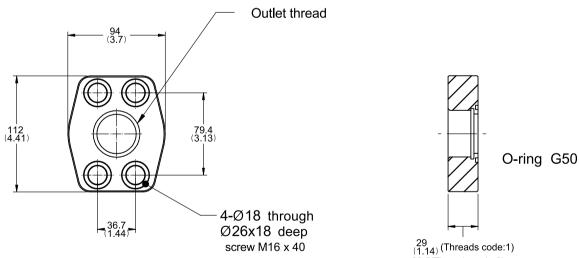
	Thru shaft adaptors are available with the following dimensions:							
thru code	А	В	С	D	Е	F	G	
J	80	8.5	103	-	M8	109	M10	
K	100	10.5	125	-	M10	140	M12	
L	125	10.5	160	-	M12	180	M16	
М	160	13.5	200	-	M16	224	M20	
N	200	13.5	250	-	M20	n. avail.	n. avail.	
D	82.55	8	-	-	-	106	M10	
E	101.6	11	-	89.8	M10	146	M12	
F	127	13.5	-	114.5	M12	181	M16	
G	152.4	13.5	-	161.6	M16	229	M20	
н	165.1	17	-	224.5	M20	n. avail.	n. avail.	

Thread codes are 3 and 7 the dimensions E and G are UNC-2B threads threads code: 3 and 7 Not standard, not in stock require special requests.

1⊖ 1⊕

PV Series

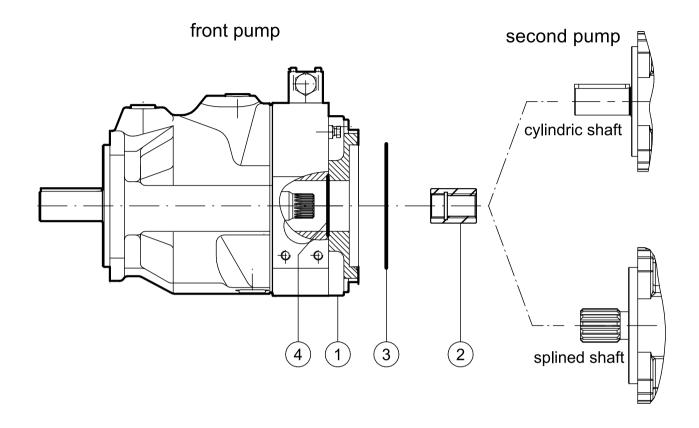
Dimension


PV270 (Body 5) Inlet / outlet Flange

Thru drive

Inlet Flange

Outlet Flange


29 (1.14) (Threads code:1) 29.5(Threads code:2) (1.16)

Ports						
Thread code	3	1	2	7		
	UNF(SAE)	BSPP(G)	PT(RC)	ISO 6149(M)		
Inlet	welding 3 1/2"					
Outlet	1 7/8"-12 UN	G 1 1/2"-11	PT 1 1/2"-11	M48*P2.0		
Threads and 2.8.7 are not standard, not it stack, aposially fabricate						

Threads code: 3 & 7 are not standard, not it stock, specially fabricate.

Pump Combination

NO.	Name
1	adapter
2	coupling
3	front pump o-ring
4	second pump o-ring

Order code refers to next page

PV Series

Pump Combination

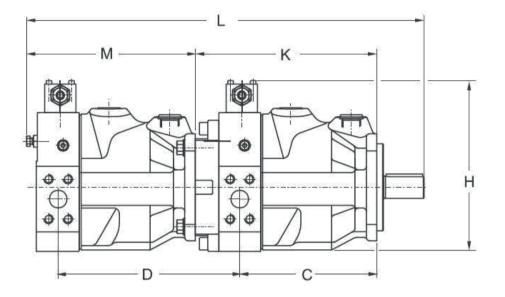
(2) coupling

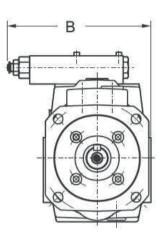
order no.

secon	d pump	fornt pump Size				
second pump shaft	model	Body 1 (PV016~023, PV028)	Body 2 (PV032~046, 056,065)	Body 3 (PV063~092, 110,125)	Body 4 (PV140~180, 210)	Body 5 (PV270)
SAE splined shaft						
9T 16/32 DP		4A505032	4A505037	4A505051	4A505058	4A505069
11T 16/32 DP		_		_	_	
13T 16/32 DP		4A505033	4A505034	4A505047	4A505059	4A505070
15T 16/32 DP	(PV016~023,PV028) (PV032~046,056,065)	_	4A505040	4A505120	4A505060	4A505071
14T 12/24 DP	(PV032~046,056,065)		4A505036	4A505052	4A505061	4A505072
17T 12/24 DP		—		—	—	
13T 8/16 DP	(PV063~092,110,125) (PV140~180,210)	-		_	4A505062	4A505073
15T 8/16 DP	(PV140~180,210) (PV270)	-		_	4A505063	4A505074
splined shaft DIN 5480						
15T W25x1.5x15	(PV016~023,PV028)	4A505031	4A505038	4A505049	4A505057	4A505068
20T W32x1.5x20	(PV032~046,056,065)		4A505039	4A505048	4A505056	4A505067
25T W40x1.5x25	(PV063~092,110,125)		—	4A505050	4A505055	4A505066
24T W50x2.0x24	(PV140~180,210)	_	—		4A505054	4A505065
28T W60x2.0x28	(PV270)	-		-	-	4A505075
cylindric shaft						
ø19.05*4.76		_		_	_	
Ø22.22*4.76			4A505042	4A505043	4A505053	4A505064
Ø22.22*6.35		_	4A505042	4A505043	4A505053	4A505064
Ø25.4*6.35	(PV016~023,PV028)	_	4A505041	_	_	
Ø31.75*7.94	(PV032~046,056,065)		_		_	
Ø44.45*11.11	(PV063~092,110,125) (PV140~180,210)	_		_	_	
Ø50.8*12.7	(PV140~180,210) (PV270)	_		_	_	
cylindric shaft						
Ø25*8	(PV016~023,028)	_	4A505035		_	
ø32*10	(PV032~046,056,065)	_	_		_	
Ø40*12	(PV063~092,110,125)	_	_		_	
ø50*14	(PV140~180,210)	_	_		_	
Ø65*18	(PV270)	_		—	_	

PV Series

Pump Combination


order no.


		1	3	4
Fornt pump	Thru drive code	Adapter	Fornt pump o-ring	Second pump o-ring
	Ι <i>φ</i> 63	4A504012	3AAA1BA134	3AAC1AA065
	J φ 80	4A504013	3AAA1BA134	3AAC1AA085
Body 1	Κ φ100	4A504014	3AAA1BA134	3AAC1AA105
(PV016~023,028)	C φ 50.8	4A504015	3AAA1BA134	3AAC1AA055
	D φ 82.55	4A504016	3AAA1BA134	3AAC1AA085
	Ε <i>φ</i> 101.6	4A504017	3AAA1BA134	3AAC1AA105
	Ι $φ$ 63 (261L)		3AAA1BA146	
	J φ 80 (261L)		3AAA1BA146	3AAD1AA080
	Κ $φ$ 100 (261L)	4A504023	3AAA1BA146	3AAD1AA100
Body 2	L φ 125 (261L)	4A504024	3AAA1BA146	3AAD1AA125
(PV032~046,056,065)	D φ 82.55 (261L)	4A504020	3AAA1BA146	3AAD1AA085
	Ε φ 101.6 (261L)	4A504021	3AAA1BA146	3AAD1AA100
	S φ 101.6 (276L)	4A504018	3AAA1BA146	3AAD1AA100
	F φ 127 (276L)	4A504019	3AAA1BA146	3AAD1AA130
	Ι <i>φ</i> 63		3AAA1BA146	
	J <i>φ</i> 80	4A504030	3AAA1BA146	3AAD1AA080
	K φ 100	4A504031	3AAA1BA146	3AAD1AA100
Body 3	L φ 125	4A504032	3AAA1BA146	3AAD1AA125
(PV063~092,110,125)	M φ 160	4A504033	3AAA1BA146	3AAF1AA316
(1 0003 092, 110, 123)	D φ 82.55	4A504025	3AAA1BA146	3AAD1AA085
	E φ 101.6	4A504026	3AAA1BA146	3AAD1AA100
	F φ127	4A504027	3AAA1BA146	3AAD1AA130
	G φ 152.4	4A504028	3AAA1BA146	3AAA1AA163
	J φ 80	4A504039	3AAA1BA153	3AAD1AA080
	K φ 100	4A504040	3AAA1BA153	3AAD1AA100
	L φ 125	4A504041	3AAA1BA153	3AAD1AA125
Body 4	Μ φ 160	4A504042	3AAA1BA153	3AAF1AA316
(PV140~180,210)	D φ 82.55	4A504035	3AAA1BA153	3AAD1AA085
	Ε φ101.6	4A504036	3AAA1BA153	3AAD1AA100
	F φ127	4A504037	3AAA1BA153	3AAD1AA130
	G φ 152.4	4A504038	3AAA1BA153	3AAA1AA163
	J φ 80	4A504049	3AAA1BA153	3AAD1AA080
	K φ 100	4A504050	3AAA1BA153	3AAD1AA100
Body 5	L φ 125	4A504051	3AAA1BA153	3AAD1AA125
(PV270)	M φ 160	4A504052	3AAA1BA153	3AAF1AA316
	Ν φ200	4A504053	3AAA1BA153	3AAF1AA320
	D φ 82.55	4A504044	3AAA1BA153	3AAD1AA085

PV Series

Dimensions

Double pump dimens ons

Main pump	Second pump	Interface main pump	L	В	С	D	Н	Κ	М
PV016,020,023,028	PV016,020,023,028	100 B4 HW	489	196	170.5	225	220	225	212
PV032,040,046, 056,065	PV016,020,023,028 PV032,040,046,056,065	125 B4 HW	541 574	208 208	197 197	235.5 261	245 245	261 261	212 245
PV063,080,092 110,125	PV016,020,023,028 PV032,040,046,056,065 PV063,080,092,110,125	160 B4 HW	630 663 724	232 232 232	252 252 252	244.5 271 326	299 299 299	326 326 326	212 245 306
PV140,180,210	PV016,020,023,028 PV032,040,046,056,065 PV063,080,092,110,125 PV140,180,210	160 B4 HW	719 752 813 878	230 230 230 230	305 305 305 305	208.5 307 362 415	349 349 349 349	415 415 415 415	212 245 306 385
PV270	PV016,020,023,028 PV032,040,046,056,065 PV063,080,092,110,125 PV140,180,210 PV270	200 B4 HW	860 893 954 1033 1134	255 255 255 255 255 255	403 403 403 403 403	299 325.5 380.5 433.5 531.5	406 406 406 406 406	531.5 531.5 531.5 531.5 531.5 531.5	212 245 306 385 510

PV Series

PV Axial Piston Pump

Thru drive, shaft load limitations

The max Transferable torque in Nm for the different shafts options are:

Shaft code	PV016-023 PV028	PV032-046 PV056&065	PV063-125	PV032-046 PV210	PV270
Ν	300	550	1320	2000	2000
D	300	610	1218	2680	2680
F	-	-	-	1320	-
G	-	-	-	1640	-
М	300	570	1150	1900	2850
K	405	675	1400	2650	3980

Important notice

The max. allowable torque of the individual shaft must not be exceeded.

For 2-pump combinations, there is no problem because PV series offers 100%thru torque.

For 3-pump combinations (or more), the limit torque will be reached or exceeded.

Therefore, it is necessary to calculate the torque factor and compare with the allowed torque limit factor in the table.

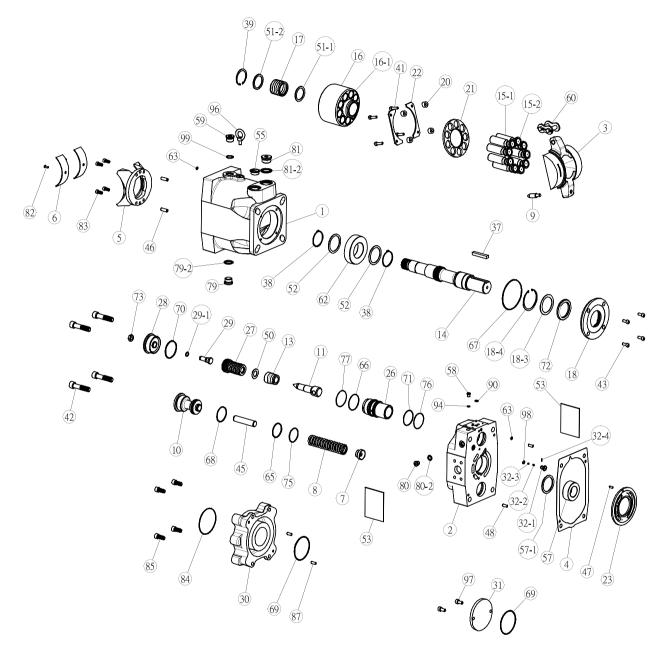
<torque factor<="" th=""></torque>
To make the necessary calculations
easier and more user friendly it is not
required to calculate actual torque
requirements in Nm and compare them
with the shaft limitations. The table on
the right shows limit factors that include
material specification, safety factors and
conversion factors.

Requirement: calculated torque factor

The total torque factor is represented by the sum of the individual torque factors of all pumps in the complete pump combination.

The torque factor of each individual pump is calculated by multiplying the max. operating pressure p of the pump(in bar) with the max.displacement Vg of the pump(in cm^3/rev).

	pump	shaft	torque limit factor				
		N	17700				
		D	17700				
	PV016-PV023	М	17700				
	PV028	К	20130				
[N	32680				
	PV032-046	D	36380				
	PV056&065	М	33810				
	· · · · · · · · · · · · · · · · · · ·	K	40250				
		N	77280				
		D	72450				
	PV063-PV092 PV110&125	М	67620				
	PVIIUQIZO	К	83720				
Ī		N	118400				
		D	158760				
		F	78750				
	PV140-PV180 PV210	G	97650				
	PVZIU	М	113400				
		К	157500				
		N	119000				
		D	159700				
	PV270	М	170100				
	·	K	236250				
	Total torque factor of the comination=						


sum of individual torque factors of all pumps

Torque factor of any pump= $p \times Vg$ (pressure in bar x displacement in cm³/rev)

PV Axial Piston Pump Exploded View

(E.g.Body 4)

Remark:Body1 without (16-1) Body1~3 without (18-3) Body1~3,5 without (67-1)

WINMAN product specifications are subject to change without prior notice.

PV Axial Piston Pump Exploded View

NO	Item	NO	Item
1	Pump body	51-1	Washer-cylinder block
2	Pump cover	51-2	Washer-cylinder block
3	Swash plate	52	Washer-shaft
4	Body seal	53	Seal
5	Trunnion carrier	55	Plug
6	Trunnion bearing	57	Needle bearing
7	Guide-servo spring	57-1	Washer
8	Servo spring	58	Plug-comp.interface
9	Locator-servo spring	59	Plug-feedback
10	Plug-servo spring	60	Chain link
11	Connector-swash plate	62	Roller bearing
13	Contour sleeve	63	O-ring
14	Shaft	65	O-ring
15-1	Piston assembly	66	O-ring
15-2	Piston shose	67	O-ring
16	Cylinder block	68	O-ring
16-1	Cylinder block washer	69	O-ring
17	Spring-cylinder block	70	O-ring
18	Pilot cover	71	O-ring
18-3	Pilot cover washer	72	Shaft-seal
18-4	Snap ring	73	Lock nut with seal
20	Distance washer	75	B/U ring
21	Slipper retainer	76	B/U ring
22	Retainer segment	77	B/U ring
23	Valve plate	79	Plug
26	Servo piston sleeve	79 - 2	Washer
27	Servo piston	80	Plug
28	Servo piston cover	80-2	Washer
29	Spindle	81	Plug
29-1	O-ring	81-2	Washer
30	Adaptor	82	Screw
31	Cover plate	83	Screw
32-1	Air bleed valve	84	O-ring
32-2	Spring	85	Adaptor-screw
32-3	Ball	87	Adaptor-pin
32-4	Pin	90	O-ring
37	Кеу	94	O-ring
38	Snap ring-shaft	96	Lift eye
39	Snap ring-cyl.block	97	Screw
41	Retainer screw	98	O-ring
42	Screw	99	O-ring
43	Head cap screw		
45	Guide pin-servo		
46	Loc.pin-cradle		
47	Loc.pin-valve plate		
50	Washer-servo piston		

General installation information

A.Fuid recommendations

Premium quality hydraulic mineral oil fluids are recommended, like H-LP oils to DIN 51524, part2. The viscosity range should be 25 to 50 mm²/s (cSt) at 50° C. Operating temperatures –10 to +70°C. For other fluids such as phosphoric acid esters or for other operating conditions, please consult with WINMAN for assistance.

B. Seals

NBR (Nitrile) seals are used for operation with hydraulic fluids based on mineral oil. For synthetic fluid, as perhaps phosphoric acid esters, Fluorocarbon seals are required. Please consult with WINMAN for assistance.

C. Filtration

For maximum pump and system component functionability and life, the system should be protected from contamination by effective filtration.

Fluid cleanliness should be in accordance with ISO classification ISO 4406.

The quality of filter elements should be in accordance with ISO standards.

(1) Minimum requirement for filtration rate ×(mm):

General hydraulic systems for satisfactory operation:

Class 19/15, to ISO 4406 X=25 μ m (β 25 \geq 75) to ISO 4572

(2) Hydraulic systems with maximum component life and functionability:

Class 16/13, to ISO 4406 X=10µm (β10≧75) to ISO 4572

It is recommended to use return line or pressure filters.

WINMAN Filter Division offers a wide range of these filters for all common applications and mounting styles. The use of suction filters should be avoided, especially with fast response pumps.

Bypass filtration is a good choice for best filter efficiency.

D. Installation and mounting

Horizontal mounting:

Outlet port-side or top. Inlet port-side or bottom, drain port always uppermost.

Vertical mounting: Shaft pointing upwards.

Install pump and suction line in such way that the maximum inlet vacuum never exceeds 0.8 bar absolute. The inlet line should be as short and as straight as possible.

A short suction line cut to 45° is recommended when the pump is mounted inside the reservoir, to improve the inlet conditions. All connections should be leak-free,otherwise the air in the suction line will cause cavitations, noise, and damage to the pump.

E. Shaft rotation and alignment

Pump and motor shafts must be aligned within 0.25mm T.I.R. maximum. A floating coupling must be used. Bellhousings and couplings can be ordered at manufacturers listed in this catalog.

Please follow the coupling manufacturer's installation instructions.

Please consult with WINMAN for assistance on radial load type drives.

F. Start up

Prior to start up, the pump case must be filled with hydraulic fluid (use case drain port). Initial start up should be at zero pressure with an open circuit to enable the pump to prime. Pressure should only be increased once the pump has been fully primed. **Attention:** Check motor rotation direction.

G. Operating noise of pumps

The normal operating noise of a pump and constantly-operation noise of the entire hydraulic system is largely determined by where and how the pump is mounted and how it is connected to the down stream hydraulic system. Besides, size, style, and installation of hydraulic tu e are the major influence on the overall noise emitted by a hydraulic system.

General installation information

H. Noise reduction measures

Flexible elements help to prevent pump body vibration from being transmitted to other construction elements, where amplification may occur. Such elements can be:

Bell housing with elastic dampening flange with vulcanized labyrinth

- (1) Floating and flexible coupling
- (2) Damping rails
- (3) Or silent blocks for mounting the electric motor or the foot mounting flange
- (4) Flexible tube connections (compensators) or hoses on inlet, outlet, and drain port of the pump.
- (5) Exclusive use of gas tight tube fittings for inlet connections to avoid ingression of air causing cavitations and excessive noise.

I. Drain line

The drain line must lead directly to the reservoir without restriction. The drain line must not be connected to any other return line.

The end of the drain line must be below the lowest fluid level in the reservoir and as far away as possible from the pump inlet line. This ensures that the pump is not empty itself when it's not in operation and the hot aireated oil will not be recirculated.

For the same reason, when the pump is mounted inside the reservoir, the drain line should be arranged in such a way that a siphon is created. This ensures that the pump is always filled with fluid.

The drain pressure must not exceed 1 bar.

Drain line length should not exceed 2 meters.

Minimum diameter should be selected according to the port size and a straight low pressure fitting with maximized bore should be used.

	PV016/PV020/PV023 PV028	PV032/PV040/PV046 PV056/PV065	PV063~092 PV110/PV125	PV140~180 PV210	PV270
Size of pipe joints	3/8"	1/2"	3/4"	1"	1-1/4"
I.D. of pipes	Ø12 more	Ø15 more	Ø19 more	Ø25 more	Ø32 more
Length of drain	Under 1m	Under 1m	Under 1m	Under 1m	Under 1m